

100Gb/s and 112Gb/s QSFP28 LR4 1310nm 20km Optical Transceiver

Features

- Hot pluggable QSFP28 MSA form factor
- Lane data rate of 25.78125Gb/s,27.953Gb/s
- Up to 20km reach for G.652 SMF
- Single +3.3V power supply
- Operating case temperature: 0°C ~70°C
- Transmitter: cooled 4x25Gb/s LAN WDM DFB TOSA
- Receiver: 4x25Gb/s PIN ROSA
- Maximum power consumption 3.5W
- 4x28G Electrical Serial Interface (CEI-28G-VSR)
- Duplex LC receptacle
- RoHS-6 compliant

Applications

- 100GBASE-LR4 Ethernet Links
- OTN OTU4 411-9D1F

General Description

This product is a 100Gb/s transceiver module designed for optical communication applications compliant to 100GBASE-LR4 of the IEEE P802.3ba and OTU4 411-9D1F standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309. 14nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high performance cooled LAN WDM DFB transmitters and high sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 20km links and compliant to optical interface with IEEE802.3ba Clause 88 100GBASE-LR4 requirements.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Functional Description

The transceiver module receives 4 channels of 25Gb/s electrical data, which are processed by a 4-channel Clock and Data Recovery (CDR) IC that reshapes and reduces the jitter of each electrical signal. Subsequently, each of 4 DML laser driver IC's converts one of the 4 channels of electrical signals to an optical signal that is transmitted from one of the 4 cooled DML lasers which are packaged in the Transmitter Optical Sub-Assembly (TOSA). Each laser launches the optical signal in specific wavelength specified in IEEE802 .3ba 100GBASE-LR4 requirements. These 4-lane optical signals will be optically multiplexed into a single fiber by a 4-to- 1 optical WDM MUX. The optical output power of each channel is maintained constant by an automatic power control (APC) circuit. The transmitter output can be turned off by TX_DIS hardware signal and/or 2-wire serial interface.

The receiver receives 4-lane LAN WDM optical signals. The optical signals are de-multiplexed by a 1-to-4 optical DEMUX and each of the resulting 4 channels of optical signals is fed into one of the 4 receivers that are packaged into the Receiver Optical Sub-Assembly (ROSA). Each receiver converts the optical signal to an electrical signal. The regenerated electrical signals are re-timed and de-jittered and amplified by the RX portion of the 4-channel CDR. The re-timed 4-lane output electrical signals are compliant with IEEE CAUI-4 interface requirements. In addition, each received optical signal is monitored by the DOM section. The monitored value is reported through the 2- wire serial interface. If one or more received optical signal is weaker than the threshold level, RX_LOS hardware alarm will be triggered. A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP28 memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_ Not_ Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a resetLow Power Mode (LPMode) pin is used as TX disable. If the LPMode pin is in the high state, the modulor will tune off the Laser.

Module Present (Mod PrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) pin is used as RX-LOS. When "Low", it indicates a RX-LOS assert. Other alarm asserting does not go though IntL pin.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Table1-Absolute Maximum Ratings							
Parameter	Symbols	Min.	Max.	Unit	Notes		
Storage Temperature	Ts	-40	85	°C			
Operating Case Temperature	TOP	0	70	°C			
Power Supply Voltage	VCC	-0.5	3.6	V			
Relative Humidity (non-condensation)	RH	0	85	%			
Damage Threshold, each Lane	THd	5.5		dBm			

Recommended Operating Conditions

Table2-Recommended Operating Conditions								
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes		
Operating Case Temperature	TOP	0		70	°C			
Power Supply Voltage	VCC	3.135	3.3	3.465	V			
Data Rate, each Lane			25.78		Gb/s			
Control Input Voltage High		2		VCC	V			
Control Input Voltage Low		0		0.8	V			
Link Distance with G.652	D	0.002		20	km			

Optical, Characteristic

QSFP28 100GBASE-LR4									
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes			
Signaling Speed per Channel			25.78125		Gbps				
	LO	1294.53		1296.59	nm				
Lawa Manalawath	L1	1299.02		1301.09	nm				
Lane Wavelength	L2	1303.54		1305.63	nm				
	L3	1308.09		1310. 19	nm				
	Т	ransmitter							
Side Mode Suppression Ratio	SMSR	30			dB	2			
Total Average Launch Power	PT			10.5	dBm				
Average Launch Power, each Lane	PAVG	- 1.0		4.5	dBm				
OMA, each Lane	POMA	-0.5		4.5	dBm				
Difference in Launch Power between any	Dty diff			5					
wo Lanes(OMA)	Ptx,diff			3	dB				

Launch Power in OMA minus Transmitter						
and Dispersion Penalty (TDP), each Lane		-2.3			dBm	
TDP, each Lane	TDP			2.2	dB	
Extinction Ratio	ER	4			dB	
RIN200MA	RIN			- 130	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			- 12	dB	
Eye Mask{X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4	4, 0.45, 0.25, 0	0.28,0.4}		1
Average Launch Power OFF Transmitter, each Lane	P _{off}			-30	dBm	
		Receiver				
Signaling Speed per Channel			25.78125		Gbps	
	LO	1294.53		1296.59	nm	
Long Wavelength	L1	1299.02		1301.09	nm	
Lane Wavelength	L2	1303.54		1305.63	nm	
	L3	1308.09		1310. 19	nm	
Total Average Receive Power				10.5	dBm	
Average Receive Power, each Lane				4.5	dBm	
Receive Power (OMA), each Lane				4.5	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-9.5	dBm	2
Stressed Receiver Sensitivity (OMA), each Lane				-6.8	dBm	
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			5.5	dB	
LOS Assert	LOSA	-25			dBm	
LOS De-assert	LOSD			- 13	dBm	
LOS Hysteresis	LOSH	0.5		6	dB	

1.Compliant to IEEE 802.3ba.

2.Measured with conformance test signal at receiver input for BER = 1×10^{-12} .

QSFP28 OTU4							
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes	
Signaling Speed per Channel			27.95		Gbps		
	LO	1294.53		1296.59	nm		
Lane Wavelength	L1	1299.02		1301.09	nm		
	L2	1303.54		1305.63	nm		
	L3	1308.09		1310.19	nm		
Transmitter							
Side Mode Suppression Ratio	SMSR	30			dB		

		-							
Total Average Launch Power	PT			10	dBm				
Average Launch Power, each Lane	PAVG	0		4	dBm				
Channel Power Difference	Pout,diff			5	dB				
Extinction Ratio	ER	4		6.5	dB				
Optical Return Loss Tolerance	TOL			20	dB				
Transmitter Reflectance	RT			-12	dB				
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm				
Receiver									
Signaling Speed per Channel			27.95		Gbps				
	LO	1294.53		1296.59	nm				
Lane Wavelength	L1	1299.02		1301.09	nm				
	L2	1303.54		1305.63	nm				
	L3	1308.09		1310.19	nm				
Total Average Receive Power				10.5	dBm				
Average Receive Power, each Lane				4	dBm				
Receiver Sensitivity , each Lane	SEN			-9.0	dBm	1			
Total Average Launch Power	PIN			10	dBm				
Difference in Receive Power between any Two Lanes(OMA)	Prx,diff			5.5	dB				
LOS Assert	LOSA	-25			dBm				
LOS De-assert	LOSD			- 13	dBm				
LOS Hysteresis	LOSH	0.5		6	dB				

1. Specified at a BER of 10-6(pre-FEC), per ITU-T G.sup39.

Electrical Characteristic

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbols	Min.	Typical	Max.	Unit	Notes			
Power Consumption				3.5	W				
Supply Current	lcc			1.12	А				
Transmitter (each Lane)									
Differential Input Voltage Swing	Vin,pp			900	mVpp				
Differential Input Impedance	Zin	90	100	1 10	Ohm				
		Receiver (e	ach Lane)						
		100		400					
Differential Output Voltage	Vouten	300		600	~~\/~~~	1			
Swing	Vout,pp	400		800	mVpp	I			
		600		1200					
Differential Output Impedance	Zout	90	100	1 10	Ohm				

1. Output voltage is settable in 4 discrete ranges via I2C. Default range is 400 – 800mV.

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8436.

Parameter	Symbols	Min.	Max.	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-5	5	°C	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-3%	3%	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	
Channel Bias current monitor	DMI_Ibias_Ch	- 10%	10%	mA	Ch 1~Ch4
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	

Transceiver Block Diagram

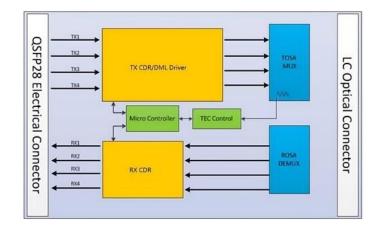
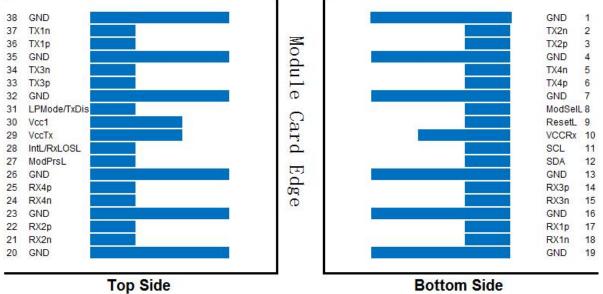



Figure 1 – Transceiver Block Diagram

Pin Description

Viewed From Top

Bottom Side Viewed From Bottom

Figure 2 Pin view

Pin Function Definitions

Pin	Symbols	Logic	Description	Notes
1	GND		Ground	1
2	Tx2n	CML-I	Transmitter Inverted Data Input	
3	Tx2p	CML-I	Transmitter Non-Inverted Data Input	
4	GND		Ground	1
5	Tx4n	CML-I	Transmitter Inverted Data Input	
6	Tx4p	CML-I	Transmitter Non-Inverted Data Input	
7	GND		Ground	
8	ModSelL	LVTTL-I	Module Select	
9	ResetL	LVTTL-I	Module Reset	
10	Vcc Rx		+3.3V Power Supply Receiver	2
11	SCL	LVCOMS-I/O	2-wire serial interface clock	
12	SDA	LVCOMS-I/O	2-wire serial interface data	
13	GND		Ground	
14	Rx3p	CML-0	Receiver Non-Inverted Data Output	
15	Rx3n	CML-0	Receiver Inverted Data Output	
16	GND		Ground	1
17	Rx1p	CML-0	Receiver Non-Inverted Data Output	
18	Rx1n	CML-0	Receiver Inverted Data Output	1

19	GND		Ground	1
20	GND		Ground	
21	Rx2n	CML-0	Receiver Inverted Data Output	
22	Rx2p	CML-0	Receiver Non-Inverted Data Output	
23	GND		Ground	
24	Rx4n	CML-0	Receiver Inverted Data Output	
25	Rx4p	CML-0	Receiver Non-Inverted Data Output	
26	GND		Ground	1
27	ModPrsL	LVTTL-0	Module Present	
28	IntL	LVTTL-0	Interrupt	
29	VccTx		+3.3V Power supply transmitter	2
30	Vcc1		+3.3V Power supply	2
31	LPMode	LVTTL-I	Low Power Mode	
32	GND		Ground	1
33	ТхЗр	CML-I	Transmitter Non-Inverted Data Input	
34	Tx3n	CML-I	Transmitter Inverted Data Input	
35	GND		Ground	1
36	Tx1p	CML-I	Transmitter Non-Inverted Data Input	
37	Tx1n	CML-I	Transmitter Inverted Data Input	
38	GND		Ground	1

1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2.VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Power Supply Filter

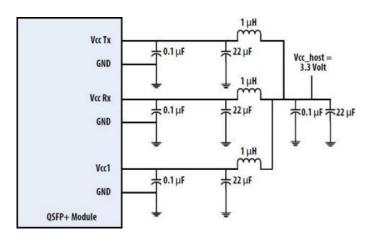


Figure 3 – Recommended Power Supply Filter

Mechanical Dimensions

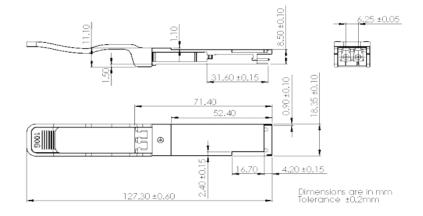


Figure 4 – Mechanical Outline

ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Further Information:

Web	www.naddod.com		
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com	
	For customer service: support@naddod.com	For other informations: info@naddod.com	
	For technical support: tech@naddod.com		

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights Reserved, 2022

NADDOD - Explore the Digital Future of Intelligence HPC, Networking, Data Center, ISP Solutions