

10Gb/s SFP+ LR 1310nm10km Optical Transceiver

Features

- Up to 10km transmission distance
- Support Multi Rate 2.5-10.3125Gbps
- 1310nm DFB and PIN receiver
- SFI electrical interface
- 2-wire interface for integrated Digital Diagnostic monitoring
- SFP MSA package with duplex LC connector
- Hot pluggable
- Very low EMI and excellent ESD protection
- +3.3V power supply
- Power consumption less than 1.2W
- Operating case temperature: 0~+70°C

Applications

- High-speed storage area networks
- Computer cluster cross-connect
- Custom high-speed data pipes
- LTE optical repeater application

Compliance

- Compliant with IEEE 802.3ae-2002
- Compliant with MSA SFF-8472
- Compliant with MSA SFF-8431

Description

10Gb/s Enhanced Small Form Factor Pluggable SFP+ transceivers are designed for use in 10-Gigabit Ethernet links up to 10km over Single Mode fiber. They are compliant with SFF-8431, SFF-8432 and IEEE802.3ae 10GBASE-LR/LW, and 10G Fibre Channel 1200-SM-LL-LDigital diagnostics functions are available via a 2-wire serial interface. The transceiver is a "limiting module", i.e., item ploys a limiting receiver. Host board designers using an EDCPHYIC should follow the IC manufacturer's recommend settings for inter operating the host-board EDCPHY with a limiting receiver SFP+ module. The optical transceiver is compliant per the ROHS Directive 2011/65/EU.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings							
Parameter	Symbol	Min.	Max.	Unit			
Storage Temperature	Ts	-40	+85	${\mathbb C}$			
Supply Voltage	Vcc	0	3.6	V			
RX Input Average Power	Pmax	0	+3	dBm			

Recommended Operating Conditions

Table2-Recommended Operating Conditions						
Parameter	Symbol	Min.	Typical	Max.	Unit	
Operating Case Temperature	TC	0	25	+70	$^{\circ}\! \mathbb{C}$	
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	ICC			300	mA	

Transmitter Operating Characteristic-Optical

Table3-Transmitter Operating Characteristic-Optical						
Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Side Mode Suppression Ratio	SMSR	30			dBm	
Output Center Wavelength	λс	1260	1310	1355	nm	
Spectral Width (-20dB)	Pm			1	nm	
Laser Off Power	Poff			-30	dBm	
Relative Intensity Noise	Rin			-128	dB/Hz	
Average Optical Power	Pavg	-8.2		0.5	dBm	
Extinction Ratio	ER	3.5			dB	

Receiver Operating Characteristic-Optical

Table4-Receiver Operating Characteristic-Optical							
Parameter	Symbol	Min.	Typical	Max.	Unit	Note	
Rx Output Rise and Fall Time	Tr/Tf		34		ps	20% to 80%	
Center Wavelength Range	λr	1260	1310	1355	nm		
Overload	Rovl	0.5			dBm		
Sensitivity	Rsen			-14.4	dBm		
RX_LOS Assert Level	RLOSa	-26			dBm		
RX_LOS De-assert Level	RLOSd			-12	dBm		
RX_LOS Hysteresis	RLOSh	0.5			dB		

Digital Diagnostic Functions

The transceiver can be used in host systems that require either internally or externally calibrated digital diagnostics.

Table5-Digital diagnostic specification table						
Parameter	Symbol	Min.	Max	Unit	Notes	
Internally measured transceiver temperature	DMI_Temp	-3	3	$^{\circ}\!\mathrm{C}$	Over operating temp	
Measured RX received average optical power	DMI_TX	-2	2	dB		
Measured TX output power	DMI_RX	-2	2	dB	-1dBm to -16dBm range	
Internally measured transceiver supply voltage	DMI_VCC	-100	100	mV	Full operating range	
Measured TX bias	DMI_Ibias	-10	10	%		

Pin Description

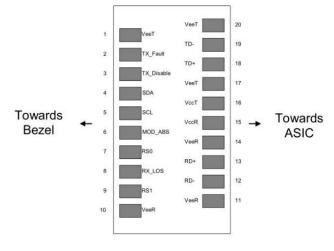


Figure1 Pin view

Pin Function Definitions

Table6-P	in Function De	efinitions		
PIN	Symbol	Name / Description	Power Sequence Order	Note
1	VeeT	Module Transmitter Ground	1st	1
2	TX_Fault	Module Transmitter Fault	3rd	2
3	TX_Dis	Transmitter Disable. Laser output disabled on high or open	3rd	3
4	SDA	2-Wire Serial Interface Data Line	3rd	2
5	SCL	2-Wire Serial Interface Clock	3rd	2
6	MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	3rd	
7	RS0	Not used	3rd	4
8	RX_LOS	Receiver Loss of Signal Indication Active High	3rd	5
9	RS1	Not used	3rd	4
10	VeeR	Module Receiver Ground	1st	1
11	VeeR	Module Receiver Ground	1st	1
12	RD-	Receiver Inverted Data Output	3rd	
13	RD+	Receiver Data Output	3rd	
14	VeeR	Module Receiver Ground	1st	1
15	VccR	Module Receiver 3.3 V Supply	2nd	
16	VccT	Module Receiver 3.3 V Supply	2nd	
17	VeeT	Module Transmitter Ground	1st	1
18	TD+	Transmitter Non-Inverted Data Input	3rd	
19	TD-	Transmitter Inverted Data Input	3rd	
20	VeeT	Module Transmitter Ground	1st	1

^[1] Circuit ground is internally isolated from chassis ground..

- [3] Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- [4] Internally pulled down per SFF-8431 Rev 2.0. See Sec. X for the logic table to use for the internal CDRs locking modes.
- [5] LOS is open collector output. Should be pulled up with $4.7k\Omega$ $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

^[2] TFAULT is an open collector/drain output, which should be pulled up with a 4.7k-10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.

Monitoring Specification

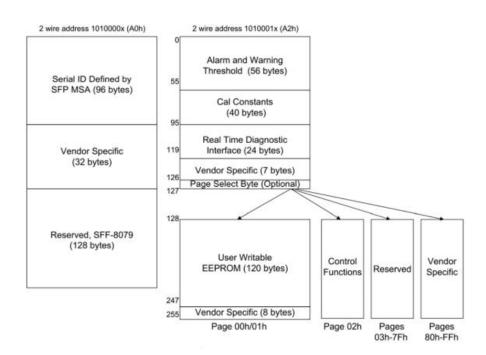


Figure2 Memory map

Mechanical Dimensions

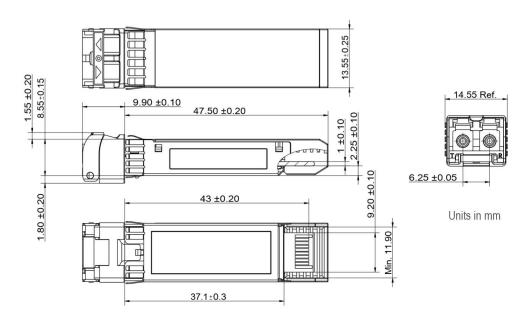


Figure 3 Map Mechanical Outline

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other informations: info@naddod.com

For technical support: tech@naddod.com

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights Reserved, 2022

NADDOD - Explore the Digital Future of Intelligence HPC, Networking, Data Center, ISP Solutions