

10Gb/s SFP+ BIDI TX-1270nm/RX-1330nm 60km Optical Transceiver

Features

- Up to 11.1Gbps data rate
- BIDI LC/UPC type pluggable optical interface
- 1270nm DFB laser and APD receiver
- 2-wire interface with integrated Digital Diagnostic monitoring
- Hot- pluggable
- Up to 60km on 9/125μm SMF
- RoHS-10 compliant and lead-free
- Single +3.3V power supply
- Meet ESD requirements, resist 8KV direct contact voltage
- Maximum power consumption 1.5W
- Compliant with SFF-8472
- Case operating temperature: $0 \sim +70^{\circ}$ C

Applications

- Switch to Switch interface
- 10GBASE-ER/EW
- 10G Ethernet
- Router/Server interface
- Other optical transmission systems

Compliance

- SFP MSA
- SFF-8472
- IEEE802.3z
- RoHS

Description

The SFP-10G-U60-23 series single-mode transceivers are designed for use in 10-Gigabit Ethernet links up to 60km over single mode fiber .The module consists of CWDM DFB Laser, APD and Preamplifier in a high-integrated optical sub-assembly. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

The SFP-10G-U60-23 transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings								
Parameter	Symbols	Min.	Max.	Unit	Notes			
Storage Temperature	Ts	-40	85	°C				
Power Supply Voltage	V_{CC}	-0.5	3.6	V				
Relative Humidity (non-condensation)	RH	5	95	%				
Damage Threshold	TH _d	5		dBm				

Recommended Operating Conditions and Power Supply Requirements

Table2-Recommended Operating Conditions and Power Supply Requirements								
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes		
Operating Case Temperature	T _{OP}	0		+70	°C			
Power Supply Voltage	Vcc	3.135	3.3	3.465	V			
Data Rate			10.3125		Gb/s			
Control Input Voltage High		2		Vcc	V			
Control Input Voltage Low		0		0.8	V			
Link Distance (SMF)	D			60	km	9/125um		

Electrical Characteristic

Tested under recommended operating conditions, unless otherwise noted

Table3-Electrical Character	stic					
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Power Consumption	Р			1.5	W	

Supply Current	lcc			450	mA			
Transmitter								
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V			
AC Common Mode Input Voltage Tolerance (RMS)		15			mV			
Differential Input Voltage Swing	Vin,pp	180		700	mVpp			
Differential Input Impedance	Zin	90	100	110	Ohm	1		
Transmit Disable Assert Time				10	US			
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V			
Transmit Enable Voltage	Ven	Vee		Vee+0.8	V	2		
Receiver								
Differential Output Voltage Swing	Vout,pp	300		850	mVpp			
Differential Output Impedance	Zout	90	100	110	Ohm	3		
Data output rise/fall time	Tr/Tf	28			ps	4		
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5		
LOS De-assert Voltage	VlosL	Vee		Vee+0.8	V	5		
Power Supply Rejection	PSR	100			mVpp	6		

Notes:

- [1] Connected directly to TX data input pins. AC coupled thereafter.
- [2] Or open circuit.
- [3] Input 100 ohms differential termination.
- [4] These are unfiltered 20-80% values.
- [5] Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- [6] Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

Optical Characteristic

Table4-Optical Characteristic						
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
		Transmitter				
Center Wavelength	λ _C	1260	1270	1280	nm	
Optical Spectral Width	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Optical Power	P _{AVG}	0		5	dBm	
Optical Extinction Ratio	ER	3.5			dB	
Average Launched Power(Laser Off)	P _{Off}			-30	dBm	

Transmitter Eye Mask	(Compliant with 802.3ae(class 1 laser safety)						
Receiver								
Center Wavelength	λ C	1320	1330	1340	nm			
Receiver Sensitivity (Average Power)	Sen.			-20	dBm	1		
Input Saturation Power (overload)	Psat	-8			dBm			
LOS Assert	LOSA	-35			dBm			
LOS De-assert	LOSD			-21	dBm			
LOS Hysteresis	LOSH	0.5			dB			

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

[1] Measured with Light source 1270nm @1330nm, ER=3.5dB; BER =<10^-12 @10.3125Gbps, PRBS=2^31-1 NRZ.

Digital diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode.

Table5-Digital Diagnostic Functions							
Parameter	Symbols	Min.	Max.	Unit	Notes		
Temperature monitor absolute error	DMI_ Temp	-3	3	degC	Over operating temp		
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Full operating range		
RX power monitor absolute error	DMI_RX	-3	3	dB			
Bias current monitor	DMI_ bias	-10%	10%	mA			
TX power monitor absolute error	DMI_TX	-3	3	dB			

Pin Description

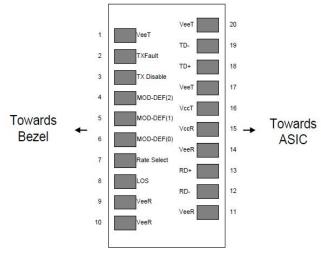


Figure1 Pin view

Pin Function Definitions

PIN	Name	Description	Notes
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.Open Drain. Logic "0" indicates normal operation.	
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required.	4
8	LOS	Loss of Signal indication. Open Drain. Logic "0" indicates normal operation.	5
9	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out(CML). AC Coupled	
13	RD+	Receiver Non-inverted DATA out(CML). AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	Vcct	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- [1] Circuit ground is internally isolated from chassis ground.
- [2] Laser output disabled on TDIS>2.0V or open, enabled on TDIS<0.8V.
- [3] Should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- [4] This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fi ber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with $> 30 \text{k}\Omega$ resistor. The input states are:
- 1) Low (0 0.8V): Reduced Bandwidth
- 2) (>0.8, <2.0V): Undefined
- 3) High (2.0 3.465V): Full Bandwidth
- 4) Open: Reduced Bandwidth
- [5] LOS is open collector output should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Mechanical Dimensions

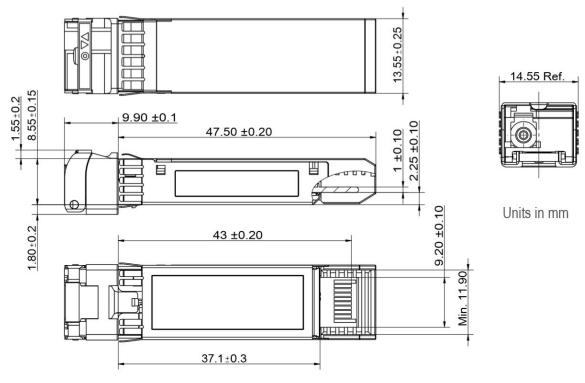


Figure 2 Mechanical Outline

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other informations: info@naddod.com

For technical support: tech@naddod.com

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights Reserved, 2022

NADDOD - Explore the Digital Future of Intelligence HPC, Networking, Data Center, ISP Solutions