

1.25Gb/s SFP BIDI TX-1550nm/RX-1490nm 80km Optical Transceiver

Features

- Up to 1.25Gbps data rate
- BIDI LC/UPC type pluggable optical interface
- 1550nm DFB laser transmitter and PIN photo-detector
- Hot- pluggable
- Up to 80km on 9/125μm SMF
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS-10 compliant and lead-free
- Support Digital Diagnostic Monitoring interface
- Single +3.3V power supply
- Compliant with SFF-8472
- Case operating temperature: $0 \sim +70^{\circ}$ C

Applications

- Switch to Switch interface
- Gigabit Ethernet
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Compliance

- SFP MSA
- SFF-8472
- IEEE802.3z
- RoHS

Description

The SFP-1G-D80-54 series single-mode transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the PIN photo-detector. The module data link up to 80km in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings							
Parameter	Symbols	Min.	Max.	Unit	Notes		
Storage Temperature	Ts	-40	85	°C			
Power Supply Voltage	Vcc	-0.3	3.6	V			
Relative Humidity (non-condensation)	RH	5	95	%			
Damage Threshold	TH _d	5		dBm			

Recommended Operating Conditions and Power Supply Requirements

Table2-Recommended Operating Conditions and Power Supply Requirements							
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes	
Operating Case Temperature	T _{OP}	0		+70	°C		
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Data Rate			1.25		Gb/s		
Control Input Voltage High		2		Vcc	V		
Control Input Voltage Low		0		0.8	V		
Link Distance (SMF)	D			80	km	9/125um	

Electrical Characteristic

Tested under recommended operating conditions, unless otherwise noted

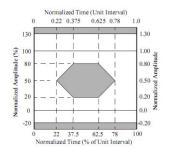
Table3-Electrical Characteristic						
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Power Consumption	Р			0.95	W	
Supply Current	lcc			300	mA	

Transmitter							
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V		
Differential Input Voltage Swing	Vin,pp	200		2400	mVpp		
Differential Input Impedance	Zin	90	100	110	Ohm		
Transmit Disable Assert Time				5	us		
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V		
Transmit Enable Voltage	Ven	Vee-0.3		0.8	V		
			Receiver				
Differential Output Voltage Swing	Vout,pp	500		900	mVpp		
Differential Output Impedance	Zout	90	100	110	Ohm		
Data output rise/fall time	Tr/Tf		100		ps	20% to 80%	
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V		
LOS De-assert Voltage	VlosL	Vee-0.3		0.8	V		

Optical Characteristic

Table4-Optical Characteristic								
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes		
Transmitter								
Center Wavelength	λ C	1530	1550	1570	nm			
Spectrum Bandwidth(RMS)	σ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Optical Power	P _{AVG}	0		5	dBm	1		
Optical Extinction Ratio	ER	9			dB			
Transmitter OFF Output Power	POff			-45	dBm			
Transmitter Eye Mask		2						
		Rec	eiver					
Center Wavelength	λ C	1470	1490	1510	nm			
Receiver Sensitivity (Average Power)	Sen.			-26	dBm	3		
Input Saturation Power (overload)	Psat	-3			dBm			
LOS Assert	LOSA	-36			dB	4		
LOS De-assert	LOSD			-27	dBm	4		
LOS Hysteresis	LOSH	0.5	2	6	dBm			

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

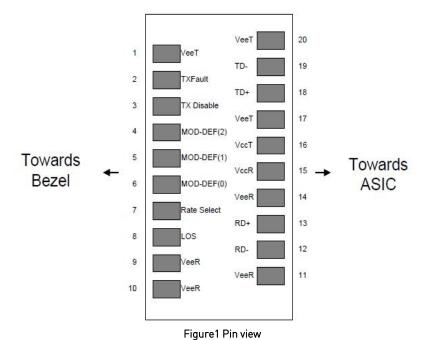


Notes:

- [1] Measure at 2^7-1 NRZ PRBS pattern
- [2] Transmitter eye mask definition.
- [3] Measured with Light source 1550nm, ER=9dB; BER = $<10^{-12}$

@PRBS=2^7-1 NRZ

[4] When LOS de-asserted, the RX data+/- output is High-level (fixed).



Digital diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode.

Table5-Digital Diagnostic Functions Parameter Symbols Min. Max. Unit Notes Temperature monitor absolute error DMI_Temp -3 3 degC Over operating temp Supply voltage monitor absolute error DMI_VCC -0.15 0.15 ٧ Full operating range -3 3 RX power monitor absolute error DMI_RX dΒ Bias current monitor -10% DMI_ bias 10% $\mathsf{m}\mathsf{A}$ -3 3 TX power monitor absolute error DMI_TX dΒ

Pin Description

Pin Function Definitions

Table6-P	in Function Defi	initions	
PIN	Name	Description	Notes
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.Open Drain. Logic "0" indicates normal operation.	
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required.	4
8	LOS	Loss of Signal indication. Open Drain. Logic "0" indicates normal operation.	5
9	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out(CML). AC Coupled	
13	RD+	Receiver Non-inverted DATA out(CML). AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- [1] Circuit ground is internally isolated from chassis ground.
- [2] Laser output disabled on TDIS>2.0V or open, enabled on TDIS<0.8V.
- [3] Should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- [4] This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fi ber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with $> 30 \text{k}\Omega$ resistor. The input states are:
- 1) Low (0 0.8V): Reduced Bandwidth
- 2) (>0.8, <2.0V): Undefined
- 3) High (2.0 3.465V): Full Bandwidth
- 4) Open: Reduced Bandwidth
- [5] LOS is open collector output should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Mechanical Outline

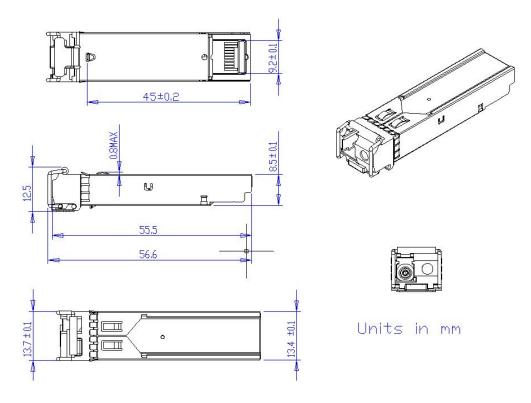


Figure 2 Mechanical Outline

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other informations: info@naddod.com

For technical support: tech@naddod.com

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights Reserved, 2022

NADDOD - Explore the Digital Future of Intelligence HPC, Networking, Data Center, ISP Solutions