

2.5Gb/s SFP 1310nm 10km Optical Transceiver

Features

- Up to 2.5Gbps data-rate
- 1310nm DFB laser transmitter and PIN photo-detector
- Up to 10km on 9/125 μ m SMF
- Hot-pluggable
- Duplex LC/UPC type pluggable optical interface
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS-10 compliant and lead-free
- Operating temperature range:0~+70°C
- Support Digital Diagnostic Monitoring interface
- Single +3.3V power supply

Applications

- Gigabit Ethernet
- 1xFiber/2xFiber channel
 Application
- Switch to Switch Interface
- Router/Server Interface
- Other Optical Links

Compliance

- SFP MSA
- SFF-8472
- IEEE802.3z
- RoHS

Description

The SFP-0C48-LR series multi-mode transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the PIN photo-detector .The module data link up to 10km in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I²C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I²C register access.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings

Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Storage Temperature	TS	-40		+85	°C	
Power Supply Voltage	VCC	-0.3	-	+3.6	٧	
Relative Humidity (non-condensation)	RH	5		95	%	
Damage Threshold	THd	5			dBm	

Recommended Operating Conditions

Table2-Recommended Operating Conditions

rubter recommended operating conditions							
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes	
Operating Case temperature	Tc	0		+70	°C		
3.3V Supply Voltage	VCC	3.135	3.3	3.465	V		
Total Data Rate			2.5		Gbps		
Control Input Voltage High		2		Vcc	٧		
Control Input Voltage Low		0		0.8	V		
Link Distance (SMF)	D			10	km	9/125 μ m	

Electrical Characteristic

T ^	Personal Control	1.01	
IANIEK-	FIECTIC	al Charac	teristic
IUDICO	- CCCCIIC	at Ollai at	

Tables-Electricat Characteristic							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Supply current	lcc			280	mA		
Power Consumption	р			0.95	W		
Optical Transmitter Characteristics							

Single-ended Input Voltage Tolerance	vcc	-0.3		4.0	٧	
Differential Input Voltage Swing	Vin,pp	200		2400	mVpp	
Differential Input Impedance	Zin	90	100	110	0hm	
Transmit Disable Assert Time				5	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee-0.3		0.8	V	
	C	Optical Recei	iver Characteristic	:s		
Differential Output Voltage Swing	Vout,pp	500		900	mVpp	
Differential Output Impedance	Zout	90	100	110	0hm	
Data output rise/fall time	Tr/Tf		100		ps	20% to 80%
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	
LOS De-assert Voltage	VlosL	Vee-0.3		0.8	٧	

Optical Characteristics

Table4-Optical Characteristics								
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes		
Optical Transmitter Characteristics								
Center Wavelength	λ C	1290	1310	1330	nm			
Spectrum Bandwidth(RMS)	σ			1	nm			
Average Optical Power	PAVG	-5		0	dBm	1		
Side Mode Suppression Ratio	SMSR	30			dB			
Extinction Ratio	ER	8.2			dB			
Transmitter OFF Output Power	Poff			-45	dBm			
Transmitter Eye Mask Definition		Compliant	with G.957(c	lass 1 laser s	safety)			
	Optical Recei	ver Character	istics					
Center Wavelength	λ C	1270		1610	nm			
Sensitivity (Average Power)	Sen.			-19	dBm	2		
Input Saturation Power(overload)	Psat	0			dBm			
LOS Assert	LOSA	-36			dBm	3		
LOS De-assert	LOSD			-20	dBm	3		
LOS Hysteresis	LOSH	0.5	2	6	dB			

Notes:

[1]Measure at 2^23-1 NRZ PRBS pattern.

[2]Measured with Light source 1310nm, ER=8.2dB; BER = < 10^-12 <code>GPRBS=2^23-1</code> NRZ

[3]When LOS de-asserted, the RX data+/- output is High-level (fixed).

Pin Description

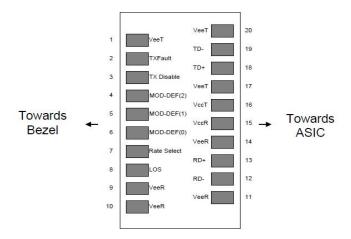


Figure 1 Pin view

Pin Function Definitions

Table5-Pin Function Definitions						
Pin	Name	Description	Notes			
1	VEET	Transmitter Ground (Common with Receiver Ground)	1			
2	TFAULT	Transmitter Fault.Open Drain. Logic "0" indicates normal operation.				
3	TDIS	Transmitter Disable. Laser output disabled on high or open.	2			
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3			
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3			
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3			
7	Rate Select	No connection required.	4			
8	LOS	Loss of Signal indication. Open Drain. Logic "0" indicates normal operation.	5			
9	VEER	Receiver Ground (Common with Transmitter Ground)	1			
10	VEER	Receiver Ground (Common with Transmitter Ground)	1			
11	VEER	Receiver Ground (Common with Transmitter Ground)	1			
12	RD-	Receiver Inverted DATA out(CML). AC Coupled				
13	RD+	Receiver Non-inverted DATA out(CML). AC Coupled				
14	VEER	Receiver Ground (Common with Transmitter Ground)	1			
15	VCCR	Receiver Power Supply				
16	VCCT	Transmitter Power Supply				
17	VEET	Transmitter Ground (Common with Receiver Ground)	1			
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.				
19	TD-	Transmitter Inverted DATA in. AC Coupled.				
20	VEET	Transmitter Ground (Common with Receiver Ground)	1			

Notes:

[1]Circuit ground is internally isolated from chassis ground.

[2]Laser output disabled on TDIS $\,>$ 2.0V or open, enabled on TDIS $\,<$ 0.8V.

[3]Should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.

[4] This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > 30k Ω resistor. The input states are:

1) Low (0 - 0.8V): Reduced Bandwidth

2) (>0.8, <2.0V): Undefined

3) High (2.0 - 3.465V): Full Bandwidth

4) Open: Reduced Bandwidth

[5]LOS is open collector output should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Recommended Operating Conditions

Table6-Recommended Operating Conditions							
Parameter	Symbols	Min.	Max.	Unit	Notes		
Temperature monitor	DMI _ Temp	-3	3	degC	Over operating temp		
Supply voltage monitor	DMI _VCC	-0.15	0.15	V	Full operating range		
RX power monitor	DMI_RX	-3	3	dB			
Bias current monitor	DMI _ bias	-10%	10%	mA			
TX power monitor	DMI TX	-3	3	dB			

Mechanical Dimensions

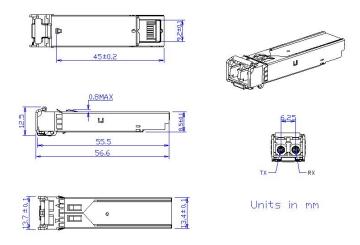


Figure 2 Mechanical Outline

Precautions

a. This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly

recommended. Follow guidelines according to proper ESD procedures. b. Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other informations: info@naddod.com

For technical support: tech@naddod.com

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights Reserved, 2022

NADDOD - Explore the Digital Future of Intelligence HPC, Networking, Data Center, ISP Solutions