

400Gb/s OSFP DR4 1310nm 500m MTP/MPO-12 Optical Transceiver

Features

- Compliant with IEEE 802.3bs and OSFP MSA
- Four Parallel 1310nm Optical Lanes
- 8*53.125Gbps (PAM4) Electrical Interface (400GAUI-8),
 4*106.25Gbps (PAM4) Optical Interface (1*12 APC MP0)
- Up to 500m Transmission on Single Mode Fiber (SMF) with FEC
- Maximum Power Consumption: 10W
- Operation Case Temperature: 0 to 70°C
- Compatible with CMIS 4.0 I²C Interface
- RoHS Compliant
- Laser Safety Class 1

Applications

- 400G Ethernet
- Data Center and Enterprise

Networking

General Description

OSFP 400GBASE-DR4 silicon photonics transceiver is based on a new state-of-the-art silicon photonics (SiPh) platform. It uses SiPh chips that integrate a number of active and passive optoelectronic components. It is a cost-effective and lower power consumption solution for 400GBASE data center.

The 400GBASE- DR4 silicon photonics module supports link lengths of up to 500m SMF with MTP/MP0-12 connector. It is compliant with OSFP MSA, CMIS 4.0 I2C Interface and 400GAUI-8 standards. The 400 Gigabit Ethernet signal is carried over four parallel 1310nm optical lanes by one wavelength per lane. It can be used as 4x 100G breakout to QSFP28-DR- 100G.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings				
Parameter	Unit	Min	Max	
Storage Temperature	°C	-40	85	
Operating Relative Humidity	%	0	85	
Power Supply Voltage	V	-0.5	3.63	
Damage Threshold	dBm	5		

Recommended Operating Conditions

Table2-Recommended Operating Conditions						
Parameter	Unit	Min.	Typical	Max.	Notes	
Operating Case Temperature	°C	0		70		
Power Supply Voltage	V	3.135	3.3	3.465		
Power Consumption	W			10		
Pre-FEC Bit Error Ratio			2.4E-4			
Post-FEC Bit Error Ratio			1E- 12		1	
Link Distance (DR4)	m	2		500	2	

Notes

1. FEC is provided by host system.

2. FEC is required on host system to support maximum distance.

Electrical Characteristic

Table3-Electrical Characteristic

Parameter	Unit.	Min	Typical.	Max	Test point1	Notes
	Trar	nsmitter				
Signaling Rate per Lane (Range)	GBd		26.5625 ±100 pp	om	TP1	
Differential Pk-pk Input Voltage Tolerance	mVpp	900			TP1a	2
Differential Input Return Loss	dB		Equation (83E-	5)	TP1	
Differential to Common Mode Input Return Loss	dB		Equation (83E-	6)	TP1	
Differential Termination Mismatch	%			10	TP1	
Module Stressed Input Test			See120E.3.4.	1	TP1a	3
Single-ended Voltage Tolerance Range	V	-0.4		3.3	TP1a	
DC Common Mode Voltage	mV	-350		2850	TP1	4
	Re	ceiver				
Signaling Rate per Lane (Range)	GBd		26.5625 ±100 pp	m	TP4	
Peak-to-peak Differential Output Voltage	mVpp			900	TP4	
AC Common-Mode Output Voltage, RMS	mV			17.5	TP4	
Differential Output Return Loss			Equation(83E-2	2]	TP4	
Common to Differential Mode Conversion			Equation(83E-3	3)	TP4	
Differential Termination Mismatch	%			10	TP4	
Transition Time, 20% to 80%	ps	9.5			TP4	
Near-end ESMW (Eye Symmetry Mask Width)	UI		0.265		TP4	
Near-end Eye Height, Differential	mV	70			TP4	
Far-end ESMW (Eye Symmetry Mask Width)	UI		0.2		TP4	
Far-end Eye Height, Differential	mV	30			TP4	
Far-end Pre-cursor ISI Ratio	%	-4.5		2.5	TP4	
DC Common Mode Voltage	mV	-350		2850	TP4	4

Notes:

1. The location of TP1, TP1a and TP4 are defined in IEEE 802.3bs Figure 120E-5 and Figure 120E-6.

2. With the exception to IEEE 802.3bs 120E.3. 1.2 that the pattern is PRBS31Q or scrambled idle.

3. Meets BER specified in IEEE 802.3bs 120E. 1. 1.

4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

Optical Characteristic

Table4-Optical Characteristic

Parameter	Unit	Min.	Typical	Max.	Notes
Tr	ansmitter				
Signaling Rate, per Lane	GBd	5	53. 125±100ppm		PAM4
TX Central Wavelength	nm	1304.5	1310	1317.5	
Side-mode Suppression Ratio (SMSR)	dB	30			
Average Launch Power, per Lane	dBm	-2.9		4	1
Outer Optical Modulation Amplitude (OMA_{Outer}), per Lane	dBm	-0.8		4.2	2
Launch Power in OMA_{Outer} Minus TDECQ, each Lane	dBm	-2.2			
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), per Lane	dB			3.4	3
Average Launch Power of OFF Transmitter, per Lane	dBm			- 15	
Extinction Ratio, per Lane	dB	3.5			
Optical Return Loss Tolerance	dB			21.4	
RIN21.40MA	dB/Hz	- 136		- 136	
Transmitter Reflectance	Transmitter Reflectance dB			-26	
H	Receiver				
Signaling Rate, per Lane	GBd	50	3.125±100ppm		PAM4
RX Central Wavelength	nm	1304.5	1310	1317.5	
Damage Threshold	dBm	5			4
Average Receive Power per Lane	dBm	-5.9		4.0	5
Receiving Power (OMA _{Outer}) per Lane	dBm			4.2	
Receive Reflectance (max.)	dB			-26	
Receiver Sensitivity (OMA _{Outer}), per Lane (Max.)	dBm		Equation(1)		6
Stressed Receiver Sensitivity (OMA_{{\scriptscriptstyle Outer}}), per Lane	dBm			- 1.9	7
Conditions of Stressed Receiver Sensitivity Test					
Stressed Eye Closure for PAM4 (SECQ), Lane Under Test	dB		3.4		8
OMA_{Outer} of each Aggressor Lane	dBm			4.2	
LOS Assert	dBm	- 15			
LOS De-Assert	dBm			-8.9	
LOS Hysteresis	dB	0.5			

Notes:

1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

2. Even if the TDECQ<1.4dB for an extinction ratio of>5dB or TDECQ<1.1dB for an extinction ratio of<5dB, the OMA_{Outer} (min) must exceed the minimum value specified here.

3. Ceq is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.

4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

5. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power

level on one lane. The receiver does not have to operate correctly at this input power.

6. Receiver sensitivity (OMA_{Outer}), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB. It

should meet Equation (1), which is illustrated in Figure 1.

7. Measured with conformance test signal at TP3 for the BER equal to 2.4E-4.

8. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Figure 1. Illustration of Receiver Sensitivity Mask for 400G-DR4 = max(-3.9, - 5.3)

[1] Where: RS is the receiver sensitivity, and SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

Optical Interface

Figure 2: MPO-12 Single Row optical patch cord and module receptacle.

Pin Description

The electrical interface of an OSFP module consists of a 60 contacts edge connector as illustrated by the diagram in Figure 3. It provides 16 contacts for 8 differential pairs of high-speed transmit signals, 16 contacts for 8 differential pairs of high-speed receive signals, 4 contacts for low-speed control signals, 4 contacts for power and 20 contacts for ground.

T he edge connector pads have 3 different pad lengths to enable sequencing of the contacts to protect the module against electrostatic discharge (ESD) and provide reliable power up/power down sequencing for the module during insertion and removal. The ground pads are the longest for first contact, the power pads are the second longest for second contact and the signal pads are the third longest for final contact during insertion.

Figure 3 : Module Pad Layout

OSFP Module Signal Pin Descriptions

Table5- OSFP Module Signal Pin Descriptions					
Parameter	Description	Description			
TX[8:1]p	Input	Transmit Differential Dairs From Hest to Medule			
TX[8:1]n	Input				
RX[8:1]p	Output	Dessived Differential Dairs From Medule to Uset			
RX[8:1]n	Output	Received Differential Pairs From Module to Host.			
SCL	Bidir	2-wire Serial Clock Signal. Requires Pull-up Resistor to 3.3V on Host.			
SDA	Bidir	2-wire Serial Data Signal. Requires Pull-up Resistor to 3.3V on Host.			
LPWn/PRSn	Bidir	Multi-level Signal for Low Power Control From Host to Module and Module Presence Indication From Module to Host. This Signal Requires the Circuit as Described in			
		Section 1 1.5.3			
INT/RSTn	Bidir	Multi-level Signal for Interrupt Request From Module to Host and Reset Control From			
		Host to Module. This Signal Requires the Circuit as Described in Section 1.1.5.2			
VCC	Power	3.3V Power for Module.			
GND	Ground	Module Ground. Logic and Power Return Path.			

OSFP Connector Pin List

Table6-0SFP Connector Pin List						
Pin	Symbol	Description	Logic	Direction	Plug Sequence	Notes
1	GND	Ground			1	
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
3	TX2n	Transmitter Data Inverted	CML-I	Input From Host	3	
4	GND	Ground			1	
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	

6	TX4n	Transmitter Data Inverted	CML-I	Input From Host	3	
7	GND	Ground			1	
8	TX6p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
9	TX6n	Transmitter Data Inverted	CML-I	Input From Host	3	
10	GND	Ground			1	
1 1	TX8p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
12	TX8n	Transmitter Data Inverted	CML-I	Input From Host	3	
13	GND	Ground			1	
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	Bi-directional	3	Open-Drain with Pull-up Resistor on Host
15	VCC	+3.3V Power		Power From Host	2	
16	VCC	+3.3V Power		Power From Host	2	
17	LPWn/P RSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3	See Pin Description for Required Circuit
18	GND	Ground			1	
19	RX7n	Receiver Data Inverted	CML-0	Output to Host	3	
20	RX7p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
21	GND	Ground			1	
22	RX5n	Receiver Data Inverted	CML-0	Output to Host	3	
23	RX5p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
24	GND	Ground			1	
25	RX3n	Receiver Data Inverted	CML-0	Output to Host	3	
26	RX3p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
27	GND	Ground			1	
28	RX1n	Receiver Data Inverted	CML-0	Output to Host	3	
29	RX1p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
30	GND	Ground			1	
31	GND	Ground			1	
32	RX2p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
33	RX2n	Receiver Data Inverted	CML-0	Output to Host	3	
34	GND	Ground			1	
35	RX4p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
36	RX4n	Receiver Data Inverted	CML-0	Output to Host	3	
37	GND	Ground			1	
38	RX6p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
39	RX6n	Receiver Data Inverted	CML-0	Output to Host	3	
40	GND	Ground			1	
41	RX8p	Receiver Data Non-Inverted	CML-0	Output to Host	3	
42	RX8n	Receiver Data Inverted	CML-0	Output to Host	3	

www.naddod.com

43	GND	Ground			1	
44	INT/RSTn	Module Interrupt / Module Reset	Multi- Level	Bi-directional	3	See Pin Description for Required Circuit
45	VCC	+3.3V Power		Power From Host	2	
46	VCC	+3.3V Power		Power From Host	2	
47	SDA	2-wire Serial interface data	LVCM 0S-I/0	Bi-directional	3	Open-Drain with Pull- up Resistor on Host
48	GND	Ground			1	
49	TX7n	Transmitter Data Inverted	CML-I	Input From Host	3	
50	TX7p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
51	GND	Ground			1	
52	TX5n	Transmitter Data Inverted	CML-I	Input From Host	3	
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
54	GND	Ground			1	
55	TX3n	Transmitter Data Inverted	CML-I	Input From Host	3	
56	ТХ3р	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
57	GND	Ground			1	
58	TX1n	Transmitter Data Inverted	CML-I	Input From Host	3	
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input From Host	3	
60	GND	Ground			1	

Recommended Power Supply Filter

Figure 4 provides an example implementation for a 3.3V power filter on the host board. If an alternate circuit is used for power filtering then the same filter characteristics as this example filter shall be met.

Figure 4: Host board power filter circuit

Diagram Mechanical Drawing

Digital Diagnostic Functions

Parameter	Unit	Error	Max
Temperature Monitor	°C	±3	1LSB= 1/256°C
Supply Voltage Monitor	V	±0.1	1LSB= 100uV
Bias Current Monitor	mA	±10%	1LSB=2uA
TX Power Monitor	dBm	±3	1LSB=0. 1uW
RX Power Monitor	dBm	±3	1LSB=0. 1uW

Further Information:

Web	www.naddod.com	
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com
	For customer service: support@naddod.com	For other informations: info@naddod.com
	For technical support: tech@naddod.com	

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom