25Gb/s SFP28 CWDM 1270-1370nm10km Optical Transceiver #### **Features** - Up to 25.78Gb/s data links - CWDM DFB laser and PIN receiver - Up to 10km on 9/125um SMF - Hot-pluggable SFP footprint - Digital diagnostic capabilities - Class 1 laser safety certified - Cost effective SFP28 solution, enables higher port densities and greater bandwidth - RoHS- 10 compliant and lead-free - Single +3.3V power supply - 2-wire interface for management specifications compliant with SFF-8472 digital diagnostic monitoring interface for optical transceivers - All-metal housing for superior EMI performance - Case operating temperature: 0 ~ +70℃ # **Applications** - High-speed storage area networks - Computer cluster cross-connect - Custom high-speed data pipes - Inter Rack Connection ## **Description** The SFP-25G-CW10 transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the CWDM DFB laser and the PIN photo- detector .The module data link up to 10km in 9/125um single mode fiber. The module optical connection is duplex LC and shall be compatible with SFP+ 28Gbps and backward compatible with legacy 10G SFP+ pluggable. The SFP28 CWDM LR module is a dual directional device with a transmitter and receiver plus a control management interface (2-wire interface) in the same physical package. 2-wire interface is used for serial ID, digital diagnostics and module control function. The transmitter converts 256bit/s serial PECL or CML electrical data into serial optical data compliant with the 25GBASE-LR standard. An open collector compatible Transmit Disable (Tx_Dis) is provided. Logic "1" or no connection on this pin will disable the laser from transmitting. Logic "0" on this pin provides normal operation. The transmitter has an internal automatic power control loop (APC) to ensure constant optical power output across supply voltage and temperature variations. An open collector compatible Transmit Fault (Tx_Fault) is provided. TX_Fault is module output contact that when high, indicates that the module transmitter has detected a fault condition related to laser operation or safety. The TX_Fault output contact is an open drain/collector and shall be pulled up to the Vcc_Host in the host with a resistor in the range 4.7- $10 \text{ k}\Omega$. TX_Disable is a module input contact. When TX_Disable is asserted high or left open, the SFP28 module transmitter output shall be turned off. This contact shall be pulled up to VccT with a $4.7 \text{ k}\Omega$ to $10 \text{ k}\Omega$ resistor. The receiver converts 25Gbit/s serial optical data into serial PECL/CML electrical data. An open collector compatible Loss of Signal is provided. Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. The Rx_LOS contact is an open drain/collector output and shall be pulled up to Vcc_Host in the host with a resistor in the range 4.7- $10 \, \text{k}\Omega$, or with an active termination. Power supply filtering is recommended for both the transmitter and receiver. The Rx_LOS signal is intended as a preliminary indication to the system in which the SFP28 is installed that the received signal strength is below the specified range. Such an indication typically points to non-installed cables, broken cables, or a disabled, failing or a powered off transmitter at the far end of the cable. ## **Absolute Maximum Ratings** | Table1-Absolute Maximum Ratings | | | | | | | | | |-----------------------------------|-----------|------|------|--------------|--|--|--|--| | Parameter | Symbols | Min. | Max. | Unit | | | | | | Storage Temperature | Ts | -40 | 85 | $^{\circ}$ C | | | | | | Supply Voltage (no damaged) | V_{CC3} | -0.5 | 3.63 | V | | | | | | Relative Humidity(non-condensing) | RH | 5 | 95 | % | | | | | | RX Input OMA Power | Pmax | 3 | | dBm | | | | | # **Recommended Operating Conditions** | Table2-Recommended Operating Conditions | | | | | | | | |---|------------------|-------|---------|-------|--------------|--|--| | Parameter | Symbol | Min. | Typical | Max. | Unit | | | | Operating Case Temperature | T _C | 0 | 25 | 70 | $^{\circ}$ C | | | | Davian Cunniy Valtaga | V _{CC3} | 3.135 | 3.3 | 3.465 | V | | | | Power Supply Voltage | I _{CC3} | | | 300 | mA | | | | Data Rate | | | 25.78 | | Gb/s | | | | Control Input Voltage High | | 2 | | Vcc | V | | | | Control Input Voltage Low | | 0 | | 0.8 | V | | | | Link Distance (SMF) | D | | | 10 | km | | | | Wavelength (nm) 1270~1370 nm | | | | | nm | | | ## **Electrical Characteristic** Tested under recommended operating conditions, unless otherwise noted | Table3-Transmitter Operating Characteristic-Optical, Electrical | | | | | | | | | |---|---------|----------|---------|----------|------|------|--|--| | Parameter | Symbol | Min. | Typical | Max. | Unit | Note | | | | Power Consumption | р | | | 1.75 | W | | | | | Supply Current | lcc | | | 520 | mA | | | | | | | Tran | smitter | | | | | | | Single-ended Input Voltage Tolerance | Vcc | -0.3 | | 4.0 | V | | | | | Common mode voltage tolerance | | 15 | | | mV | | | | | Differential Input Voltage Swing | Vin,pp | 180 | | 700 | mVpp | | | | | Differential Input Impedance | Zin | 90 | 100 | 110 | Ohm | 1 | | | | Transmit Disable Assert Time | | | | 10 | us | | | | | Transmit Disable Voltage | Vdis | Vcc- 1.3 | | Vcc | V | | | | | Transmit Enable Voltage | Ven | Vee | | Vee +0.8 | V | 2 | | | | Receiver | | | | | | | | | | Single-ended Input Voltage
Tolerance | Vcc | -0.3 | | 4.0 | V | | | | | Differential Output Voltage Swing | Vout,pp | 300 | | 900 | mVpp | | | | | Differential Output Impedance | Zout | 90 | 100 | 110 | Ohm | 3 | | | | Data output rise/fall time | Tr/Tf | 9.5 | | | ps | 4 | | | | LOS Assert Voltage | VlosH | Vcc- 1.3 | | Vcc | V | 5 | | | | LOS De-assert Voltage | VlosL | Vee | | Vee +0.8 | V | 5 | | | Notes: - [1] Connected directly to TX data input pins. AC coupled thereafter. - [2] Or open circuit. - [3] Input 100 ohms differential termination. - [4] These are unfiltered 20-80% values. - [5] Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected. # **Optical Characteristic** | Table4-Receiver Operating Characteristic-Optical, Electrical | | | | | | | | | |--|---|--------|---------|--------|------|------|--|--| | Parameter | Symbol | Min. | Typical | Max. | Unit | Note | | | | Transmitter | | | | | | | | | | Center Wavelength | λС | λ -6.5 | | λ +6.5 | nm | | | | | Optical Spectral Width | Δλ | | | 1 | nm | | | | | Average Optical Power | PAVG | -7 | | 2 | dBm | 1 | | | | Side Mode Suppression Ratio | SMSR | 20 | | | dB | | | | | Optical Extinction Ratio | ER | 3.5 | | | dB | | | | | Transmitter OFF Output Power | Poff | | | -30 | dBm | | | | | Transmitter and Dispersion Penalty | TDP | | | 2.7 | dB | | | | | Optical Return Loss Tolerance | ORLT | | | 20 | dB | | | | | Transmitter Eye Mask | smitter Eye Mask Compliant with IEEE802.3ae | | | | | | | | | Receiver | | | | | | | | | | Center Wavelength | λС | 1270 | | 1610 | nm | | | | | Receiver Sensitivity (OMA) | Sen. | | | -12 | dBm | 2 | | | | Stressed Receiver Sensitivity [OMA] | | | | -9.5 | dBm | 2 | | | | Average Receive Power | | -14 | | 2 | dBm | | | | | Input Saturation Power (overload) | Psat | 0.5 | | | dBm | | | | | LOS Assert | LOSA | -30 | | | dBm | | | | | LOS De-assert | LOSD | | | -15 | dBm | | | | | Damage Threshold | THd | 3 | | | dBm | | | | | LOS Hysteresis | LOSH | 0.5 | | | dB | | | | #### Notes: ^[1] Class 1 Laser Safety per FDA/CDRH and IEC-825- 1 regulations. ^[2] Measured with Light source 1310nm, ER=3.5dB; BER = $<10^{-}$ 12 @ PRBS= 2^{31} 1 NRZ. # **Pin Description** Figure 1 Pin view ## **Pin Function Definitions** | Table5-Pin Function Definitions | | | | | | | |---------------------------------|-----------|----------|--|------|--|--| | Pin | Logic | Symbol | Name/Description | Note | | | | 1 | | VeeT | Module Transmitter Ground | 1 | | | | 2 | LVTTL-0 | TX_Fault | Module Transmitter Fault | | | | | 4 | LVTTL-I/O | SDA | 2-wire Serial Interface Data Line (Same as MOD-DEF2 as defined in the INF-8074i) | 2 | | | | 5 | LVTTL-I/O | SCL | 2-wire Serial Interface Clock (Same as MOD-DEF1 as defined in the INF-8074i) | 2 | | | | 6 | | MOD_ABS | Module Absent,connected to VeeT or VeeR in the module | | | | | 7 | LVTTL-I | RS0 | Rate Select 0, optionally controls SFP+ module receiver. | | | | | 8 | LVTTL-0 | RX_LOS | Receiver Loss of Signal Indication (In FC designated as RX_LOS, in SONET | | | | | | | | designated as LOS, and in Ethernet designated at Signal Detect) | | | | | 9 | LVTTL-I | RS1 | Rate Select 1, optionally controls SFP+ module transmitter | | | | | 10 | | VeeR | Module Receiver Ground | 1 | | | | 11 | | VeeR | Module Receiver Ground | 1 | | | | 12 | CML-0 | RD- | Receiver Inverted Data Output | | | | | 13 | CML-0 | RD+ | Receiver Non-Inverted Data Output | | | | | 14 | | VeeR | Module Receiver Ground | 1 | | | | 15 | | VccR | Module Receiver 3.3 V Supply | | | | | 16 | | VccT | Module Transmitter 3.3 V Supply | | | | | 17 | | VeeT | Module Transmitter Ground | 1 | | | | 18 | CML-I | TD+ | Transmitter Non-Inverted Data Input | | | | | 19 | CML-I | TD- | Transmitter Inverted Data Input | | | | | 20 | | VeeT | Module Transmitter Ground | 1 | | | #### Notes: - [1] Module ground pins GND are isolated from the module case. - [2] Shall be pulled up with 4.7K- 10Kohms to a voltage between 3.15V and 3.47V on the host board. ## **Digital Diagnostic Functions** The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff. | Table6-Digital Diagnostic Functions | | | | | | | | |---------------------------------------|-----------|-------|------|------|----------------------|--|--| | Parameter | Symbols | Min. | Max. | Unit | Notes | | | | Temperature monitor absolute error | DMI_ Temp | -3 | 3 | degC | Over operating temp | | | | Supply voltage monitor absolute error | DMI_VCC | -0.15 | 0.15 | V | Full operating range | | | | RX power monitor absolute error | DMI_RX | -3 | 3 | dB | | | | | Bias current monitor | DMI_ bias | -10% | 10% | mA | | | | | TX power monitor absolute error | DMI_TX | -3 | 3 | dB | | | | ### **Mechanical Dimensions** Figure 2 Mechanical Outline # Further Information: Web www.naddod.com Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com For customer service: support@naddod.com For other informations: info@naddod.com For technical support: tech@naddod.com ## Disclaimer - 1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice. - 2. Nothing herein should be construed as constituting an additional warranty. - 3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom