

800Gb/s 0SFP SR8 850nm 50m Optical Transceiver

Features

- 53.125 GBd PAM4 ×8 channel 800G-SR8 Optical interface
- 53.125 GBd PAM4 ×8 channel 800G AUI-8 C2M Electrical interface
- Up to 50m transmission distance on OM4 MMF
- 850nm VCSEL and PIN receiver
- OSFP MSA package with MPO-16 APC
- +3.3V power supply
- Power consumption less than 12W
- Operating case temperature: 0~70°C
- IIC rate up to 1MHz

Applications

- 800G Ethernet
- Data Center
- Cloud Networks

Compliance

- OSFP MSA
- IEEE 802.3ck
- CMIS Rev4.0
- RoHS compliance

Description

The OSFP-800G-SR8 transceiver is a cost effective module with high performance, which is optimized for Data Center, supporting data-rate of 8x53.125 GBd PAM4. Its transmission distance is up to 50m on OM4 MMF. The module mainly consists of two parts: the transmitter part and the receiver part. The transmitter part consists of an 850nm VCSEL array and a driver. The receiver part consists of a trans-impedance amplifier (TIA) and a PIN photodiode array. The high-speed electrical interface is based on low-voltage logic, with nominal 100 ohm differential impedance, AC coupled in the module. Users can access a series of registers in transceiver to access monitoring and configuration data through two wire serial interface.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings						
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Storage Temperature	TS	-40		+85	°C	
Operating Relative Humidity (non-condensing)	R _H	5		85	%	
Supply Voltage	Vcc	3.1		3.6	V	
Optical Input Power	PIN			10	dBm	

Recommended Operating Conditions

Table2-Recommended Operating Conditions						
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	Тор	0		+70	°C	
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Supply Current	ICC			4000	mA	
Module Power Dissipation	Р			12	W	

Optical, **Electrical Characteristic**

Table3-Transmitter Operating Characteristic-Optical, Electrical							
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes	
Data Rate per channel(PAM4)	DR		53.125		GBd		
Frequency tracking	Ft	-100		100	Ppm		
Center Wavelength	λC		850		nm		
RMS Spectral Width				0.6	nm	Note1	
Laser Off Power	Poff			-30	dBm		
Average Optical Power	Pavg	-4.6		4	dBm		
Extinction Ratio	ER	3.5			dB		
Transmitter and dispersion eye	TDECQ			4.4	dBm		

closure						
Outer Optical Modulation Amplitude	OMAouter	-2.6		3.5		Note2
Encircled flux, each lanec	dB		≥ 86% @ 19 µn ≪ 30% @ 4.5 µr			Note3
Optical Return Loss Tolerance				12	dB	

Notes:

[1] RMS spectral width is the standard deviation of the spectrum.

[2] Even if the TDECQ<51.8dB, the OMA (min) must exceed this value.

[3] If measured into type A1a.2, type A1a.3 or type A1a.4, 50 $\,\mu$ m fiber, in accordance with IEC 61280-1-4.

Receiver Operating Characteristic-Optical, Electrical

Table4-Receiver Operating Characteristic-Optical, Electrical						
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
Data Rate per channel(PAM4)	DR		53.125		GBd	
Frequency tracking	Ft	-100		100	Ppm	
Center Wavelength	λr	840	850	860	nm	
Damage threshold		5			dBm	
Average receive power		-4.6		4	dBm	Note1
Receiver Reflectance				-15	dB	
Differential Data Output Voltage Peak to Peak Swing	Vopp			845	mV	
Eye height	EH	15			mV	
Vertical eye closure	VEC			12	dB	
Differential output Impedance	Zos	90	100	110	Ohms	
Common-Mode to differential-mode return loss	RLdc		Note2			
Transition Time, 20 to 80%	Tr, Tf	8.5			ps	

Notes:

[1] Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received

power below this value cannot be compliant; however, a value above this does not ensure compliance.

Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.6 dB.

[2]
$$RLdc(f) \ge \left\{ \begin{array}{ll} 25 - 22(f/53.125) & 0.05 \le f \le 26.56 \\ 19 - 10(f/53.125) & 26.56 < f \le 50 \end{array} \right\}$$

Digital Diagnostic Functions

Table5-Digital Diagnostic Functions							
Parameter	Symbols	Min.	Max.	Unit	Notes		
Temperature monitor absolute error	DMI_Temp	-3	3	°C			
Tx power monitor absolute error	DMI_TX	-3	3	dB			
Rx power monitor absolute error	DMI_RX	-3	3	dB			
Supply voltage monitor absolute error	DMI_VCC	-3	3	%			
Bias current monitor absolute error	DMI_Ibias	-10	10	%			

Control and Status I/O Timing Characteristics

Table6-Control and Status I/O Timing Characteristics							
Parameter	Symbols	Min.	Тур	Max.	Unit	Notes	
Mgmt Init Duration	Max MgmtInit Duration		TBD		ms	Note1	
ResetL Assert Time	t_reset_init		TBD		μs	Note2	
IntL Assert Time	ton_IntL		TBD		ms	Note3	
IntL Deassert Time	toff_IntL		TBD		μs	Note4	
Rx LOS Assert Time	ton_los		TBD		ms	Note5	
Flag Assert Time	ton_flag		TBD		ms	Note6	
Mask Assert Time	ton_mask		TBD		ms	Note7	
Mask Deassert Time	toff_mask		TBD		ms	Note8	

Notes:

[1] Time from power on, hot plug or rising edge of reset until completion of the MgmtInit State.

[2] Minimum pulse time on the ResetL signal to initiate a module reset.

[3] Time from occurrence of condition triggering IntL until Vout:IntL=Vol.

[4] Time from clear on read operation of associated flag until Vout:IntL=Voh.This includes deassert times for Rx LOS, Tx Fault and other flag bits.

[5] Time from Rx LOS state to Rx LOS bit set (value = 1b) and IntL asserted.

[6] Time from occurrence of condition triggering flag to associated flag bit set (value=1b) and IntL asserted.

[7] Time from mask bit set (value=1b) until associated IntL assertion is inhibited.

[8] Time from mask bit cleared (value=0b) until associated IntL operation resumes.

Pin Description

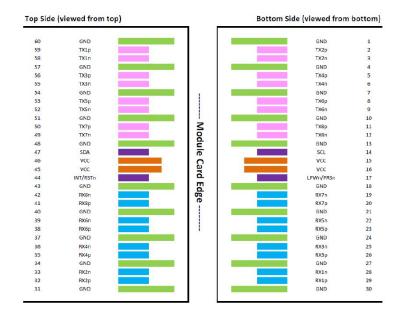


Figure 1 Pinout definitions of OSFP module inputs/outputs

Pin Function Definitions

Table7-P	in Function Def	initions			
Pin	Symbol	Description	Logic	Plug Sequence	Notes
1	GND	Ground		1	
2	TX2p	Transmitter Data Non-Inverted	CML-I	3	
3	TX2n	Transmitter Data Inverted	CML-I	3	
4	GND	Ground		1	
5	TX4p	Transmitter Data Non-Inverted	CML-I	3	
6	TX4n	Transmitter Data Inverted	CML-I	3	
7	GND	Ground		1	
8	TX6p	Transmitter Data Non-Inverted	CML-I	3	
9	TX6n	Transmitter Data Inverted	CML-I	3	
10	GND	Ground		1	
11	TX8p	Transmitter Data Non-Inverted	CML-I	3	
12	TX8n	Transmitter Data Inverted	CML-I	3	
13	GND	Ground		1	
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	3	
15	VCC	+3.3V Power		2	
16	VCC	+3.3V Power		2	
17	LPWn/P RSn	Low-Power Mode / Module Present	Multi-Level	3	
18	GND	Ground		1	

10			0141 0	0
19	RX7n	Receiver Data Inverted	CML-0	3
20	RX7p	Receiver Data Non-Inverted	CML-0	3
21	GND	Ground		1
22	RX5n	Receiver Data Inverted	CML-0	3
23	RX5p	Receiver Data Non-Inverted	CML-0	3
24	GND	Ground		1
25	RX3n	Receiver Data Inverted	CML-0	3
26	RX3p	Receiver Data Non-Inverted	CML-0	3
27	GND	Ground		1
28	RX1n	Receiver Data Inverted	CML-0	3
29	RX1p	Receiver Data Non-Inverted	CML-0	3
30	GND	Ground		1
31	GND	Ground		1
32	RX2p	Receiver Data Non-Inverted	CML-0	3
33	RX2n	Receiver Data Inverted	CML-0	3
34	GND	Ground		1
35	RX4p	Receiver Data Non-Inverted	CML-0	3
36	RX4n	Receiver Data Inverted	CML-0	3
37	GND	Ground		1
38	RX6p	Receiver Data Non-Inverted	CML-0	3
39	RX6n	Receiver Data Inverted	CML-0	3
40	GND	Ground		1
41	RX8p	Receiver Data Non-Inverted	CML-0	3
42	RX8n	Receiver Data Inverted	CML-0	3
43	GND	Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi- Level	3
45	VCC	+3.3V Power		2
46	VCC	+3.3V Power		2
47	SDA	2-wire Serial interface data	LVCM 0S-I/0	3
48	GND	Ground		1
49	TX7n	Transmitter Data Inverted	CML-I	3
50	TX7p	Transmitter Data Non-Inverted	CML-I	3
51	GND	Ground		1
52	TX5n	Transmitter Data Inverted	CML-I	3
53	TX5p	Transmitter Data Non-Inverted	CML-I	3
54	GND	Ground		1
55	TX3n	Transmitter Data Inverted	CML-I	3
56	TX3p	Transmitter Data Non-Inverted	CML-I	3
57	GND	Ground		1
58	TX1n	Transmitter Data Inverted	CML-I	3

59	TX1p	Transmitter Data Non-Inverted	CML-I	3	
60	GND	Ground		1	

Block Diagram of Transceiver

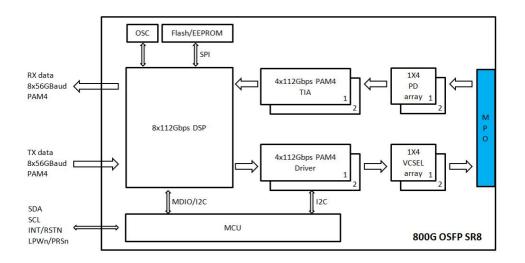


Figure 2 Block Diagram of Transceiver

Recommended Interface Circuit Dimensions

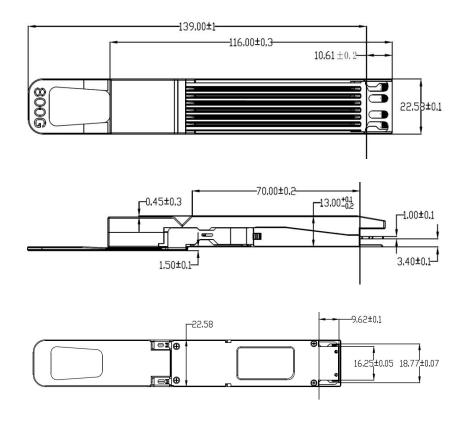


Figure 3 Recommended Interface Circuit Dimensions

Digital Diagnostic Memory Map

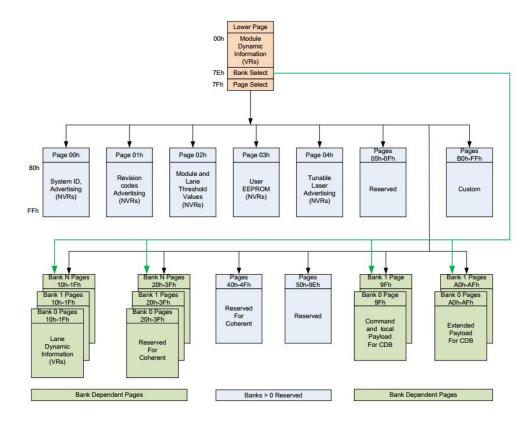


Figure 4 Digital Diagnostic Memory Map

Further Information:

Web	www.naddod.com	
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com
	For customer service: support@naddod.com	For other informations: info@naddod.com
	For technical support: tech@naddod.com	

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom