

800G Twin-port OSFP 2x400Gb/s Multimode 2xSR4 100m Transceiver

Features

- 800G 2xSR4 multimode transceiver
- 8-channels of 100G-PAM4 electrical modulation
- Two ports of 4-channel 100G-PAM4 optical modulation
- Supports two straight 400Gb/s or two 1:2 splitter fiber cables for 200Gb/s
- Finned-top OSFP for air-cooled switches
- 850nm VCSEL
- Maximum reach: 60m using OM3 fiber / 100m using OM4 fiber
- Two MPO-12/APC optical connectors
- 16 Watts max power
- Single 3.3V power supply
- Class 1 laser safety
- Hot pluggable, RoHS compliant
- CMIS 4.0 compliant
- Case temperature range 0°C to +70°C

Description

OSFP-800G-2xSR4 is an Eight-Channel, Parallel, Pluggable, Fiber-Optic OSFP for 800Gigabit Ethernet applications. This transceiver is a high performance module for shortrange data communication and interconnect application. It integrates eight data lanes in each direction with 8x53.125GBd. The length of OSFP SR8 is up to 60 meters over OM3 MMF or 100 meters over OM4 MMF. This module is designed to operate over multimode fiber systems using a nominal wavelength of 850nm.

The transceiver combinations guarantee optimal operation. Rigorous production testing ensures the best out-of-thebox installation experience, performance, and durability.

Absolute Maximum Specifications

Absolute maximum ratings are those beyond which damage to the device may occur.

Prolonged operation between the operational specifications and absolute maximum ratings is not intended and may cause permanent device degradation.

Table1-Absolute Maximum Specifications

Parameter	Min.	Typical	Max.	Unit	Note
Storage Temperature	-40		+85	°C	
Supply voltage	-0.5		3.6	V	
Relative Humidity (non- condensing)	15		85	%	
Control input voltage	-0.3		Vcc+0.5	V	
Operating Case Temperature	0		70	°C	
Receiver Damage Threshold, per Lane	5			dBm	

Recommended Operating Conditions

Table2-Recommended Operating Conditions							
Parameter	Symbol	Min	Typical	Max.	Units	Notes	
Operating Case Temperature	TOP	0		70	degC		
Relative Humidity(non-condensing)	RH	15		85	%		
Power Supply Voltage	Vcc	3.135		3.465	V		
Total Power Consumption	Pc			16	W	1	
Supply Current per end				5.1	А		
Bit Rate	BR			850	Gbps		
Fiber Length on OM3 MMF				60	m		
Fiber Length on OM4 MMF				100	m		
I ² C Clock Frequency		0		1000	kHz		

Notes:

[1] Under condition of 3.465V operating supply voltage, and 70°C case temperature.

Electrical Specifications

Table3-Electrical Specification	S					
Parameter	Test Point	Min.	Typical	Max.	Unit	Note
Pre FEC Bit Error Ratio				2.4E-4		
Post FEC Bit Error Ratio	lcc			1E-12		
	Tra	ansmitter (ea	ch Lane)			
Differential pk-pk Input Voltage tolerance		750			mV	
Differential Termination Mismatch				10	%	
Eye height		10			mV	
Common-mode to differential-mode return loss		IEEE80	2.3ck Equatior	ı (120G–1)	dB	
Vertical eye closure				12	dB	
Effective return loss		7.3			dB	
Transition Time		10			ps	
	F	Receiver(each	n Lane)			
Differential data output swing		300		900	mVpp	
Differential termination mismatch				10	%	
Eye height		15			mV	
Vertical eye closure				12	dB	
Common-mode to differential-mode return loss		IEEE802.3ck Equation (120G–1)				
Effective return loss		8.5			dB	
Transition time		8.5			ps	

Notes:

[1] Under condition of 3.465V operating supply voltage, and 70 $^\circ\mathrm{C}$ case temperature.

Optical Specifications

Table4-Optical Specifications									
Parameter	Symbol	Min.	Typical	Max.	Unit	Note			
Transceiver									
Data rate per lane	DR		53.125		GBd				
Modulation format			PAM4						
Center Wavelength	λ	840	860	868	nm	1			
RMS spectral width	σ			0.6	nm				
Average Launch power, each lane	Pavg	-1		4	dBm				
Optical Power OMA, each Lane, max			3.5		dBm				
OMA _{outer} , max (TECQ, TDECQ) < 1.8 dE each lane	Рома	max [-2.6 , max(TECQ,TECQ) - 4.4]			dBm				
min 1.8 < max (TECQ, TDECQ) <	< 4.4								

dB							
Transmitter and dispers (TDECQ), each lane	TDECQ			4.4	dB		
Transmitter eye closure	e for PAM4 (TECQ), each	TECQ			4.4	dB	
Extinction ratio		ER	2.5			dB	
Transmitter power excu	ursion, each lane				2.3	dBm	
Optical Return Loss To	lerance	ORLT			14	dB	
Optical Power for TX D	ISABLE				-30	dBm	
Encircled fluxb				:86% at 19 um 30% at 4.5 un			2
		Rece	eiver				
Data rate per lane		BR		53.125			Gbd
Modulation format				PAM4			
Center Wavelength		λ	842	850	863	nm	
Damage threshold			5			dBm	
Average receive power	, each lane		-6.4		4	dBm	
Receive power, each la	ane (OMAouter)				3.5	dBm	
Receiver reflectance		Rr			-15	dB	
Receiver sensitivity, each lane			RS = ma	ax (-4.6 , TEC	Q – 6.4)	dBm	3
Stressed receiver sensitivity, each lane					-2	dBm	
	Assert		-15			dBm	
Rx LOS	De-assert				-7.5	dBm	
	Hysteresis		0.5		5	dB	

Notes:

[1] Defined according to the performance of the laser used.

[2] Measured into type A1a.2 or type A1a.3, or A1a.4, 50µs fiber, in accordance with IEC 61280-1-4.

[3] Receiver sensitivity is informative and is defined for a transmitter with a value of TECQ. Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC.

Pin Description

The device is OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module Rev. 1.12 compliant, see <u>www.osfpmsa.org.</u>

Table	-Pin Descr	iption			
Pin	Symbol	Description	Pin	Symbol	Description
1	GND	Ground	31	GND	Ground
2	Tx2p	Transmitter Non-Inverted Data Input	32	Rx2p	Receiver Non-Inverted Data Output
3	Tx2n	Transmitter Inverted Data Input	33	Rx2n	Receiver Inverted Data Output
4	GND	Ground	34	GND	Grounds
5	Tx4p	Transmitter Non-Inverted Data Input	35	Rx4p	Receiver Non-Inverted Data Output
6	Tx4n	Transmitter Inverted Data Input	36	Rx4n	Receiver Inverted Data Output
7	GND	Ground	37	GND	Ground
8	Тх6р	Transmitter Non-Inverted Data Input	38	Rx6p	Receiver Non-Inverted Data Output
9	Tx6n	Transmitter Inverted Data Input	39	Rx6n	Receiver Inverted Data Output
10	GND	Ground	40	GND	Ground
11	Тх8р	Transmitter Non-Inverted Data input	41	Rx8p	Receiver Non-Inverted Data Output
12	Tx8n	Transmitter Inverted Data Input	42	Rx8n	Receiver Inverted Data Output
13	GND	Ground	43	GND	Ground
14	SCL	2-wire serial interface clock	44	INT / RSTn	Module Interrupt / Module Reset
15	VCC	+3.3V Power	45	VCC	+3.3V Power
16	VCC	+3.3V Power	46	VCC	+3.3V Power
17	LPWn / PRSn	Low-Power Mode / Module Present	47	SDA	2-wire Serial interface data
18	GND	Ground	48	GND	Ground
19	Rx7n	Receiver Inverted Data Output	49	Tx7n	Transmitter Inverted Data Input
20	Rx7p	Receiver Non-Inverted Data Output	50	Tx7p	Transmitter Non-Inverted Data Input
21	GND	Ground	51	GND	Ground
22	Rx5n	Receiver Inverted Data Output	52	Tx5n	Transmitter Inverted Data Input
23	Rx5p	Receiver Non-Inverted Data Output	53	Тх5р	Transmitter Non-Inverted Data Input
24	GND	Ground	54	GND	Ground
25	Rx3n	Receiver Inverted Data Output	55	Tx3n	Transmitter Inverted Data Input
26	Rx3p	Receiver Non-Inverted Data Output	56	Тх3р	Transmitter Non-Inverted Data Input
27	GND	Ground	57	GND	Ground
28	Rx1n	Receiver Inverted Data Output	58	Tx1n	Transmitter Inverted Data Input

29	Rx1p	Receiver Non-Inverted Data Output	59	Tx1p	Transmitter Non-Inverted Data Input
30	GND	Ground	60	GND	Ground

OSFP Module Pad Layout

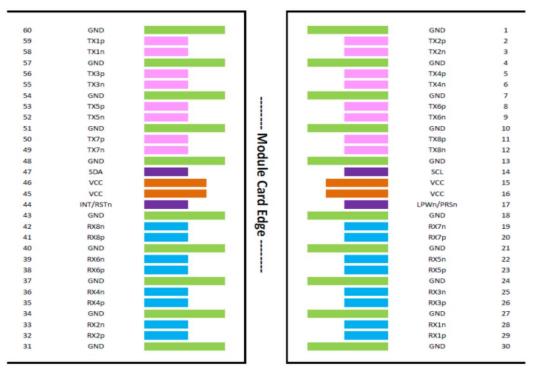
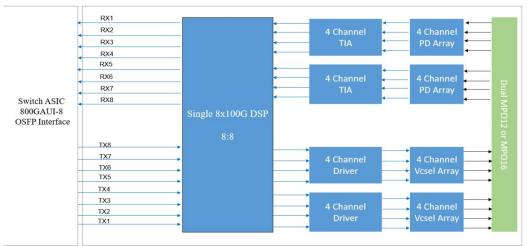
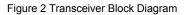




Figure 1 MSA Compliant Connector

Transceiver Block Diagram

Management Interface

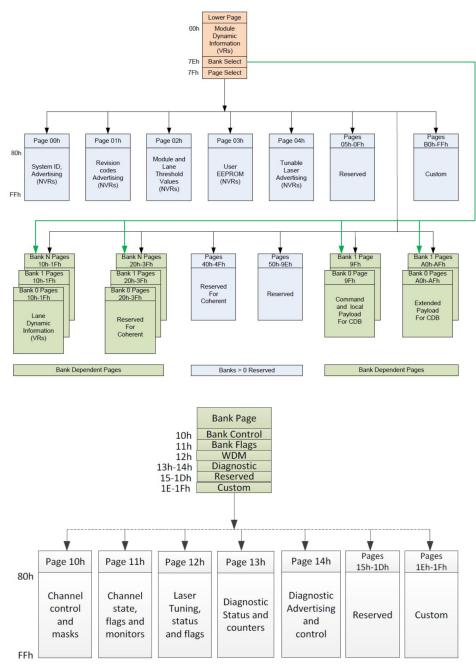


Figure 3 CMIS Module Memory Map

Optical Port Description

The optical interface port is dual MPO-12 APC receptacle. The transmit and receive optical lanes shall occupy the positions depicted in Figure 4 when looking into the MDI receptacle with the connector keyway feature on top.

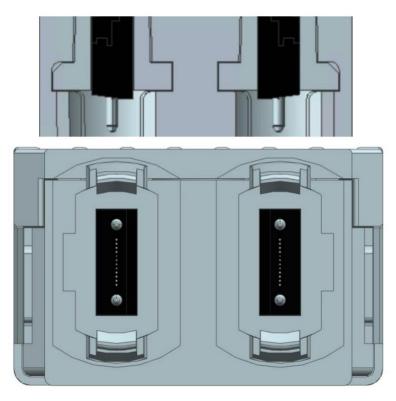


Figure 4 Optical Media Dependent Interface port assignments

Mechanical Drawing

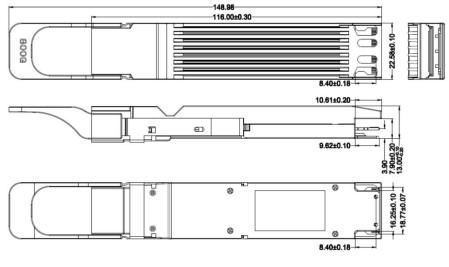


Figure 5 Mechanical Outline

Module appearance

Figure 6 Module appearance

Further Information:

Web	www.naddod.com		
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com	
	For customer service: support@naddod.com	For other informations: info@naddod.com	
	For technical support: tech@naddod.com		

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom