

400Gb/s OSFP-RHS SR8 850nm 100m MTP/MPO-16 MMF Optical Transceiver

Features

- Hot-pluggable 400G OSFP-RHS SR8 form factor
- Case temperature range of 0°C to +70°C
- Maximum link length of 100m on OM4 fiber with KP4 FEC
- +3.3V single power supply
- Power dissipation < 8W (with CDR)
- Operating case temp Commercial: 0°C to +70 °C
- MPO-16 Connector
- RoHS compliant

Applications

- Data Center Interconnect
- 400G Ethernet
- Enterprise Networking

Description

The 400GBASE-SR8 OSFP-RHS transceiver supports up to 100m link lengths over multi-mode fiber (MMF) with MTP/MPO-16 connector. This transceiver is compliant with OSFP MSA, IEEE 802.3bs protocol and 400GAUI-8 standards. The 400 Gigabit Ethernet signal is carried over eight wavelengths. Multiplexing and de-multiplexing of the eight wavelengths are managed within the device. It is suitable for 400G Ethernet, Data Center and Enterprise Networks.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes	
Supply Voltage	Vcc3	-0.5	-	+3.6	V		
Storage Temperature	Ts	-40	-	+85	°C		
Operating Humidity	RH	+5	-	+85	%	1	
Receiver Damage Threshold perLane	PRDMG	+5	-	-	dBm		

Recommended Operating Conditions

Table2-Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	TC	0	-	+70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Dissipation	Pd	-	-	8	W	

Electrical Characteristic

Table3-Electrical Characteristic

Parameter	Symbol	Unit	Min	Typical	Max	Notes		
Transmitter								
Signaling rate (each lane)	SR	GBd	26.5625	± 100 ppm				
Differential data input voltage per lane	Vin,pp,di ff	mV	-	-	900			
Differential termination	-	%	-	-	10			

mismatchal						
Single-ended voltage tolerance range	-	V	-0.4	-	3.3	
DC common mode voltage	-	mV	-350	-	2850	
		Re	ceiver			
Signaling rate (each lane)	SR	GBd	26.5625	± 100 ppm		
Differential output voltage	-	mV	-	-	900	
Near-end ESMW (Eye symmetry mask width)	-	UI	0.265	-	-	
Near-end Eye height, differential (min)	-	mV	70	-	-	
Far-end ESMW (Eye symmetry mask width)	-	UI	0.2	-	-	
Far-end Eye height, differential (min)	-	mV	30	-	-	
Differential termination mismatch	-	%		-	10	
Transition time (min, 20% to 80%)	-	ps	9.5	-	-	
DC common mode voltage	-	mV	-350	-	2850	

Optical Characteristic

Table4-Optical Characteristic							
Parameter	Symbol	Unit	Min	Typical	Мах	Notes	
		Trans	smitter				
Signaling rate (each lane)	SR	GBd		26.5625 ±10	0 ppm		
Modulation format	-	-		PAM4			
Lane wavelength	λ	nm	840	850	860		
RMS spectral width	Δλ	nm	-	-	0.6		
Average launch power, each lane	-	dBm	-6.5	-	4		
Outer Optical Modulation Amplitude (OMAouter), each lane	-	dBm	-4.5	-	3	1	
Launch power in OMAouter minus TDECQ,	-	dBm		-5.9		-	

each							
Transmitter and dispersion eye closure for PAM4	-	dB		-		-	
(TDECQ), each lane							
Launch power in OMAouter minus TDECQ, each lane	-	dBm		-5.9			
Average launch power of OFF transmitter, each lane	-	dBm	-	-	-30		
Extinction ratio	-	dB	3	-	-		
Transmitter transition time, each lane	-	ps	-	-	34		
Optical return loss tolerance	-	dB	-	-	12		
Average launch power of OFF transmitter, each lane	-	dBm	-	-	-30		
		Re	ceiver				
Signaling rate (each lane)	SR	GBd		26.5625 ±10	00 ppm		
Modulation format	-	-		PAM4			
Lane wavelength	λ	nm	840	850	860		
Damage threshold, each lane	PIN	dBm	5	-	-		
Average receive power, each lane	-	dBm	-8.4	-	4		
Receive power (OMA outer), each lane	-	dBm	-	-	3		
Receiver sensitivity (OMA outer), each lane	-	dBm	-	-	Max(-6. 5,SECQ- 7.9)	2	
LOS Assert	-	dBm	-30	-			
LOS De-Assert	-	dBm	-	-	-12		
LOS Hysteresis	-	dB	0.5	-	-		

Notes:

[1] Even if the TDECQ < 1 dB, the OMA outer (min) must exceed the minimum value specified here.

www.naddod.com

[2] The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

[3] Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

[4] Receiver Sensitivity OMA outer, each lane (max) is informative and is defined for a BER of 2.4x10-4. 6. Measured with conformance test signal at receiver input for the BER of 2.4x10-4.

Digital Diagnostic Functions

Tublee Digital Diagnootie Fanotiene

Parameter	Symbol	Min	Typical	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3		3	°C	Note1
Supply voltage monitor absolute error	DMI_Vcc	-3%		3%	V	Note2
Bias current monitor absolute error	DMI_Ibias	-10%		10%	mA	
Laser power monitor absolute error	DMI_Tx	-3		3	dB	
RX power monitor absolute error	DMI_Rx	-3		3	dB	

Notes:

[1] Temperature here is depending on module case around Max power dissipation. Temperature monitor is done over operating temperature.

[2] Supply voltage monitor is done over operating voltage.

Recommended Interface

Figure 1 Recommended Interface Circuit

Pin Description

Figure 2 OSFP module pinout

Pin Function Definitions

Table6-Pin Function Definitions							
Pin	Symbol	Description	Logic	Notes			
1	GND	Ground		1			
2	Tx2p	Transmitter Data Non-Inverted	CML-I	3			
3	Tx2n	Transmitter Data Inverted	CML-I	3			
4	GND	Ground		1			
5	Tx4p	Transmitter Data Non-Inverted	CML-I	3			
6	Tx4n	Transmitter Data Inverted	CML-I	3			
7	GND	Ground		1			
8	TX6p	Transmitter Data Non-Inverted	CML-I	3			
9	Tx6n	Transmitter Data Inverted	CML-I	3			
10	GND	Ground		1			
11	Tx8p	Transmitter Data Non-Inverted	CML-I	3			
12	Tx8n	Transmitter Data Inverted	CML-I	3			
13	GND	Ground		1			

14	SCL	2-wire serial interface clock	LVCMOS-I/O	3
15	VCC	+3.3V Power		2
16	VCC	+3.3V Power		2
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	3
18	GND	Ground		1
19	Rx7n	Receiver Data Inverted	CML-O	3
20	Rx7p	Receiver Data Non-Inverted	CML-O	3
21	GND	Ground		1
22	Rx5n	Receiver Data Inverted	CML-O	3
23	Rx5p	Receiver Data Non-Inverted	CML-O	3
24	GND	Ground		1
25	Rx3n	Receiver Data Inverted	CML-O	3
26	Rx3p	Receiver Data Non-Inverted	CML-O	3
27	GND	Ground		1
28	Rx1n	Receiver Data Inverted	CML-O	3
29	Rx1p	Receiver Data Non-Inverted	CML-O	3
30	GND	Ground		1
31	GND	Ground		1
32	Rx2p	Receiver Data Non-Inverted	CML-O	3
33	Rx2n	Receiver Data Inverted	CML-O	3
34	GND	Ground		1
35	Rx4p	Receiver Data Non-Inverted	CML-O	3
36	Rx4n	Receiver Data Inverted	CML-O	3
37	GND	Ground		1
38	Rx6p	Receiver Data Non-Inverted	CML-O	3
39	Rx6n	Receiver Data Inverted	CML-O	3
40	GND	Ground		1
41	Rx8p	Receiver Data Non-Inverted	CML-O	3
42	Rx8n	Receiver Data Inverted	CML-O	3
43	GND	Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	3
45	VCC	+3.3V Power		2
46	VCC	+3.3V Power		2
47	SDA	2-wire Serial interface data	LVCMOS-I/O	3
48	GND	Ground		1
49	Tx7n	Transmitter Data Inverted	CML-I	3
50	Tx7p	Transmitter Data Non-Inverted	CML-I	3
51	GND	Ground		1
52	Tx5n	Transmitter Data Inverted	CML-I	3

www.naddod.com

53	Tx5p	Transmitter Data Non-Inverted	CML-I	3
54	GND	Ground		1
55	Tx3n	Transmitter Data Inverted	CML-I	3
56	Тх3р	Transmitter Data Non-Inverted	CML-I	3
57	GND	Ground		1
58	Tx1n	Transmitter Data Inverted	CML-I	3
59	Tx1p	Transmitter Data Non-Inverted	CML-I	3
60	GND	Ground		1

Optical interface arrangement

The optical port is a male MPO connector receptacle, with fiber lane assignments as shown in Figure 3.

Figure 3 Optical interface arrangement. Lens upwards

Mechanical

400G OSFP-RHS SR8 transceivers are compatible with the OSFP Type 2 Specification for pluggable form factor modules.

Figure 4 Mechanical Diagram

Further Information:

Web	www.naddod.com	
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com
	For customer service: support@naddod.com	For other informations: info@naddod.com
	For technical support: tech@naddod.com	

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom