

1.6T Twin-port XDR 2x800Gb/s OSFP224 to Twin-port 2x800Gb/s OSFP224 Passive Copper Cable

Features

- 2x800Gb/s data rate
- Based on 8-channels of 200G-PAM4 modulation
- 0.9 meter length
- <0.1 Watts max per end Operate
- Operating case temperature 0-70°C
- Single 3.3V supply voltage
- Hot pluggable
- RoHS compliant
- polyvinylchloride (PVC) jacket
- LF (Lead Free) HF (Halogen Free) PCB
- OSFP msa.org based

Applications

• 2x800Gb/s Quantum-3 InfiniBand switch-to-switch

Description

NADDOD OSFP-1.6T-CU0-9H is a 1600Gb/s OSFP (Octal Small Form factor Pluggable) to 1600 Gb/s OSFP Passive Copper Cable(DAC). DAC cables are the lowest-cost, lowest-latency, near zero power consuming, high-speed links available due to their simplicity of design and minimal components. Using the Octal Small Formfactor Plug (OSFP) and containing eight high-speed electrical copper pairs, each operating at data rates of up to 200Gb/s. NADDOD's cable solutions provide power-efficient connectivity enabling higher port bandwidth, density and configurability at a low cost and reduced power requirement in the data centers.

Absolute Maximum Specifications

Absolute maximum ratings are those beyond which damage to the device may occur.

Between the operational specifications and absolute maximum ratings, prolonged operation is not intended and permanent device degradation may occur.

Table1-Absolute Maximum Specifications					
Parameter	Min.	Typical	Max.	Unit	Note
Supply voltage	-0.3		3.6	V	
Data Input Voltage	-0.3		3.6	V	
Control Input Voltage	-0.3		3.6	V	

Environmental Specifications

This table shows the environmental specifications for the product

Table2-Environmental Specifications				
Parameter	Min	Typical	Max.	Units
Storage Temperature	-40		85	°C

Operational Specifications

Table3-Optical Specifications					
Parameter	Min.	Typical	Max.	Unit	Note
Supply Voltage (Vcc)	3.135	3.3	3.465	V	
Power Consumption		-	0.1	W	
Operating Case Temperature	0		70	°C	
Operating Relative Humidity	5		85	%	

Electrical Performance Requirements

Table4-Electrical Performance Requirements		
Test Items	Test Condition	Specification
Current		0.5A per contact
Voltage		30 vDC per contact

LLCR	EIA 364-23, 20mVdc, 100mA	less than 2 ohms.
Continuity	Verify the continuous electrical path	No open, short, or high resistance.

SI Requirements

Table5-SI Requirements			
Test Items	Specification	Notes	
SDD21&SDD12	≤19.75 dB Min. @26.56 GHz;	From 0.01 GHz to 26.56GHz	
30021030012	≥ 11.0 dB max. @26.56GHz;	FIGH 0.01 GHZ 10 20.30GHZ	
ERL	Minimum cable assembly $ERL(*) : \ge 8.25 dB$		
SCD12-SDD12	≥ 10 0.05GHz≤f < 12.89GHz		
SCD21-SDD21	≥ 14-0.3108f 12.89GHz≤f≤40GHz	(up to 40GHz)	

Mechanical Performance Requirements

Table6-Mechanical Performance Requirements			
Test Items	Test Condition	Specification	
Mating Forces	A rate of 10mm per minute	OSFP < 40N	
Un-mating Forces	A rate of 10mm per minute	OSFP < 30N	
	Pull to separate module from cage, Test		
Latch strength	with connector, cage & module (latch	Minimum of an 125N force	
	engaged)		
Bulk cable retention	Pull to separate bulk cable from	Minimum of an 90N force	
in module	module, Test with cable assembly only		
	Flex cable 180° for 10 cycles at X/Y axis,		
Wire Flex	20 times/minutes, with an 1kg suspended	No microsecond discontinuities are allowed.	
	weight. Type C EIA 364-41, test condition I.		
Durability	Perform 50 unplug/plug cycles	No evidence of physical damage	
Cable Minimum	The cable is bent on time over the correct		
Bend Radius	mandrel with 5 perpendicular, the	No physical damage, Verify continuity and SI	
	Minimum bend Radius is 10x OD.		

Mechanical Specifications

Table7-Mechanical Specifications			
Parameter	Value		Units
Diameter	26AWG		mm
Longth tolevenes	length < 0.9 m	±25	
Length tolerance	length ≥ 0.9 m	±50	mm

Minimum Bend Radius

Table8-Minimum Bend Radius		
OPN	Length (m)	AWG (mm)
OSFP-1.6T-CU0-9H	0.9	26AWG, 2x8pairs

Note:

The minimum assembly bending radius (close to the connector) is 10x the cable's outer diameter. The repeated bend (far from the connector) is also 10x the cable's outer diameter. The single bend (far from the connector) is 5x the cable's outer diameter.

**Combined end' is the 'head' where the cables join together, inserted into the switch. 'Single end' is the 'tail' which plugs into the HCA/NIC in a server.

L = Assembly Space. Minimum value depends on the backshell (connector housing) dimensions = the space for the cable assembly behind the rack door.

Assembly Bending Radius

Mechanical Dimensions

Pin Description

Table9-Pin Description Pin Symbol Description Pin Symbol Description 1 GND Ground 31 GND Ground 2 Tx2p Transmitter Non-Inverted Data Input 32 Rx2p Receiver Non-Inverted Data Output 3 Tx2n Transmitter Inverted Data Input 33 Rx2n Receiver Inverted Data Output 4 GND 34 GND Grounds Ground 5 Tx4p Transmitter Non-Inverted Data Input 35 Receiver Non-Inverted Data Rx4p Output 6 Tx4n Transmitter Inverted Data Input 36 Receiver Inverted Data Output Rx4n 7 GND Ground 37 GND Ground 8 Tx6p Transmitter Non-Inverted Data Input 38 Rx6p Receiver Non-Inverted Data Output 9 Tx6n 39 Transmitter Inverted Data Input Rx6n Receiver Inverted Data Output 10 GND Ground 40 GND Ground Transmitter Non-Inverted 11 Tx8p 41 Rx8p Receiver Non-Inverted Data Data input Output Receiver Inverted Data Output 12 Tx8n Transmitter Inverted Data Input 42 Rx8n 13 GND Ground 43 GND Ground 14 SCL 2-wire serial interface clock 44 INT / RSTn Module Interrupt / Module Reset 15 VCC +3.3V Power 45 VCC +3.3V Power 16 VCC +3.3V Power 46 VCC +3.3V Power Low-Power Mode / Module 17 LPWn / 47 SDA 2-wire Serial interface data PRSn Present GND Ground 48 GND Ground 18 19 Rx7n Receiver Inverted Data Output 49 Tx7n Transmitter Inverted Data Input 20 Rx7p Receiver Non-Inverted Data Output 50 Tx7p Transmitter Non-Inverted Data Input 21 GND Ground 51 GND Ground 22 Rx5n Receiver Inverted Data Output 52 Tx5n Transmitter Inverted Data Input 23 Rx5p Receiver Non-Inverted Data Output 53 Tx5p Transmitter Non-Inverted Data Input Ground 24 GND Ground 54 GND 25 Receiver Inverted Data Output Transmitter Inverted Data Input Rx3n 55 Tx3n 26 Rx3p Receiver Non-Inverted Data Output 56 Tx3p Transmitter Non-Inverted Data Input

The device is OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module Rev. 1.12 compliant, see www.osfpmsa.org.

27	GND	Ground	57	GND	Ground
28	Rx1n	Receiver Inverted Data Output	58	Tx1n	Transmitter Inverted Data Input
29	Rx1p	Receiver Non-Inverted Data Output	59	Tx1p	Transmitter Non-Inverted Data Input
30	GND	Ground	60	GND	Ground

OSFP Module Pad Layout

Ordering Information

Table10-Ordering Information	
PN	Description
OSFP-800G-CU0-9H	passive copper cable, 2x800Gb/s InfiniBand, up to 1600Gb/s, OSFP, 0.9m

Further Information:

Web	www.naddod.com	
Email	For order requirements: sales@naddod.com	For cooperation: agency@naddod.com
	For customer service: support@naddod.com	For other informations: info@naddod.com
	For technical support: tech@naddod.com	

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.

2. Nothing herein should be construed as constituting an additional warranty.

3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | AI | Datacenter | Enterprise | Telecom