

800G Twin-port NDR 2x400Gb/s OSFP to 2x400Gb/s OSFP Passive Copper Cable

Features

- 2x400Gb/s data rate
- Based on 8-channels of 100G-PAM4 modulation
- 0.5, 1, 1.5, 2, 3 meter lengths
- 1.5 Watts max per end Operate
- SFF-8665 compliant
- Operating case temperature 0-70°C
- Single 3.3V supply voltage
- Hot pluggable
- RoHS compliant
- polyvinylchloride (PVC) jacket
- LF (Lead Free) HF (Halogen Free) PCB
- OSFP msa.org based
- SFF-8636 based I2C management interface

Applications

• 2x400Gb/s Quantum-2 InfiniBand or Spectrum-4 Ethernet switch-to-switch

Description

OSFP-800G-DACH is an 2x400Gb/s twin-port OSFP (Octal Small Form factor Pluggable) to 2x400Gb/s twin-port OSFP Direct Attached Copper cable (DAC).

DAC cables are the lowest-cost, lowest-latency, near zero power consuming, high-speed links available due to their simplicity of design and minimal components. Using the Octal Small Form factor Plug (OSFP) and containing eight high-speed electrical copper pairs, each operating at data rates of up to 100Gb/s.

The DAC firmware supports both InfiniBand and Ethernet and is automatically enabled depending on the protocol of the switch attached to. EEPROMs provide product configuration information to be read by the host. Every cable length is tuned to reduce internal signal noise and back reflections.

NADDOD's cable solutions provide power-efficient connectivity enabling higher port bandwidth, density and configurability at a low cost and reduced power requirement in the data centers. Rigorous cable production testing ensures best out-of-the-box installation experience, performance, and durability.

Absolute Maximum Specifications

Absolute maximum ratings are those beyond which damage to the device may occur.

Between the operational specifications and absolute maximum ratings, prolonged operation is not intended and permanent device degradation may occur.

Table1-Absolute Maximum Specifications					
Parameter	Min.	Typical	Max.	Unit	Note
Supply voltage	-0.3		3.6	V	
Data Input Voltage	-0.3		3.6	V	
Control Input Voltage	-0.3		3.6	V	

Environmental Specifications

This table shows the environmental specifications for the product

Table2-Environmental Specifications					
Parameter	Min	Typical	Max.	Units	
Storage Temperature	-40		85	°C	

Operational Specifications

Table3-Optical Specifications					
Parameter	Min.	Typical	Max.	Unit	Note
Supply Voltage (Vcc)	3.135	3.3	3.465	V	
Power Consumption			0.1	W	
Operating Case Temperature	0		70	°C	
Operating Relative Humidity	5		85	%	

Electrical Performance Requirements

Table4-Electrical Performance Requirements		
Test Items	Test Condition	Specification
Current		0.5A per contact
Voltage		30 vDC per contact
LLCR	EIA 364-23, 20mVdc, 100mA	less than 2 ohms.
Continuity	Verify the continuous electrical path	No open, short, or high resistance.

SI Requirements

Table5-SI Requirements				
Test Items	Specification	Notes		
SDD21&SDD12	≤19.75 dB Min. @26.56 GHz;	F 0.01 CH- t- 2/ F/CH-		
	≥ 11.0 dB max. @26.56GHz;	From 0.01 GHz to 26.56GHz		
ERL	Minimum cable assembly ERL(*) : \geq 8.25dB			
SCD12-SDD12	≥ 10 0.05GHz≤f<12.89GHz	(to /0011-1		
SCD21-SDD21	≥ 14-0.3108f 12.89GHz≤f≤40GHz	(up to 40GHz)		

Mechanical Performance Requirements

Table6-Mechanical Performance Requirements				
Test Items	Test Condition	Specification		
Mating Forces	A rate of 10mm per minute	OSFP<40N		
Un-mating Forces	A rate of 10mm per minute	OSFP<30N		
	Pull to separate module from cage,Test			
Latch strength	with connector, cage & module (latch	Minimum of an 125N force		
	engaged)			
Bulk cable retention	Pull to separate bulk cable from	Minimum of an 90N force		
in module	module,Test with cable assembly only			
	Flex cable 180° for 10 cycles at X/Y axis,			
Wire Flex	20 times/minutes, with an 1kg suspended	No microsecond discontinuities are allowed.		
	weight. Type C EIA 364-41, test condition I.			
Durability	Perform 50 unplug/plug cycles	No evidence of physical damage		
0.11.14":	The cable is bent on time over the correct			
Cable Minimum	mandrel with 5 perpendicular, the	No physical damage, Verify continuity and SI		
Bend Radius	Minimum bend Radius is 10x OD.			

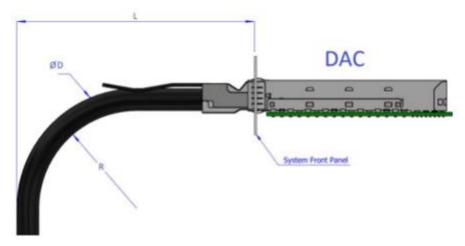
Mechanical Specifications

Table7-Mechanical Specifications				
Parameter	Value		Units	
Diameter	30AWG	mm		
	28AWG			
Length tolerance	length < 2 m	±25		
	length ≥ 2 m	±50	mm	

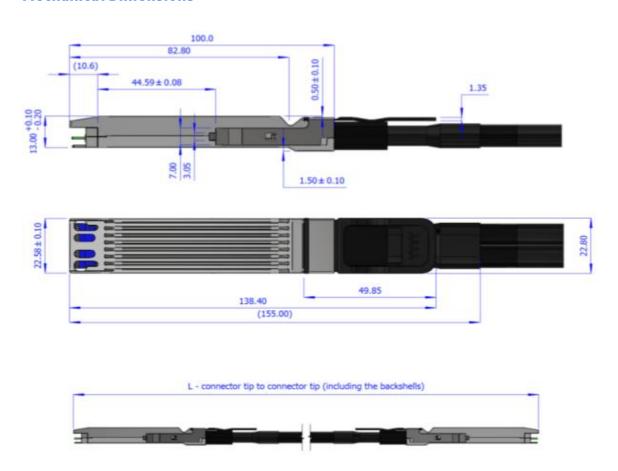
Minimum Bend Radius

Table8-Minimum Bend Radius				
OPN	Length (m)	AWG (mm)		
OSFP-800G-CU0-5H	0.50	30AWG, 2x8pairs		
OSFP-800G-CU1H	1.0	28AWG, 2x8pairs		
OSFP-800G-CU1-5H	1.5	28AWG, 2x8pairs		
OSFP-800G-CU2H	2.0	28AWG, 2x8pairs		
OSFP-800G-CU3H	3.0	26AWG, 2x8pairs		

Note:


The minimum assembly bending radius (close to the connector) is 10x the cable's outer diameter. The repeated bend (far from the connector) is also 10x the cable's outer diameter. The single bend (far from the connector) is 5x the cable's outer diameter.

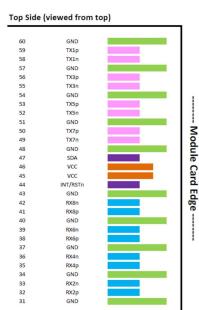
L = Assembly Space. Minimum value depends on the backshell (connector housing) dimensions = the space for the cable assembly behind the rack door.

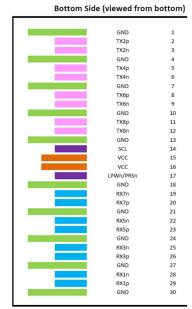

^{**}Combined end' is the 'head' where the cables join together, inserted into the switch. 'Single end' is the 'tail' which plugs into the HCA/NIC in a server

Assembly Bending Radius

Mechanical Dimensions

Pin Description


The device is OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module Rev. 1.12 compliant, see www.osfpmsa.org.


Table9	Table9-Pin Description				
Pin	Symbol	Description	Pin	Symbol	Description
1	GND	Ground	31	GND	Ground
2	Tx2p	Transmitter Non-Inverted Data Input	32	Rx2p	Receiver Non-Inverted Data Output
3	Tx2n	Transmitter Inverted Data Input	33	Rx2n	Receiver Inverted Data Output
4	GND	Ground	34	GND	Grounds
5	Tx4p	Transmitter Non-Inverted Data Input	35	Rx4p	Receiver Non-Inverted Data Output
6	Tx4n	Transmitter Inverted Data Input	36	Rx4n	Receiver Inverted Data Output
7	GND	Ground	37	GND	Ground
8	Тх6р	Transmitter Non-Inverted Data Input	38	Rx6p	Receiver Non-Inverted Data Output
9	Tx6n	Transmitter Inverted Data Input	39	Rx6n	Receiver Inverted Data Output
10	GND	Ground	40	GND	Ground
11	Tx8p	Transmitter Non-Inverted Data input	41	Rx8p	Receiver Non-Inverted Data Output
12	Tx8n	Transmitter Inverted Data Input	42	Rx8n	Receiver Inverted Data Output
13	GND	Ground	43	GND	Ground
14	SCL	2-wire serial interface clock	44	INT/RSTn	Module Interrupt / Module Reset
15	VCC	+3.3V Power	45	VCC	+3.3V Power
16	VCC	+3.3V Power	46	VCC	+3.3V Power
17	LPWn/ PRSn	Low-Power Mode / Module Present	47	SDA	2-wire Serial interface data
18	GND	Ground	48	GND	Ground
19	Rx7n	Receiver Inverted Data Output	49	Tx7n	Transmitter Inverted Data Input
20	Rx7p	Receiver Non-Inverted Data Output	50	Tx7p	Transmitter Non-Inverted Data Input
21	GND	Ground	51	GND	Ground
22	Rx5n	Receiver Inverted Data Output	52	Tx5n	Transmitter Inverted Data Input
23	Rx5p	Receiver Non-Inverted Data Output	53	Tx5p	Transmitter Non-Inverted Data Input
24	GND	Ground	54	GND	Ground
25	Rx3n	Receiver Inverted Data Output	55	Tx3n	Transmitter Inverted Data Input
26	Rx3p	Receiver Non-Inverted Data Output	56	Тх3р	Transmitter Non-Inverted Data Input

27	GND	Ground	57	GND	Ground
28	Rx1n	Receiver Inverted Data Output	58	Tx1n	Transmitter Inverted Data Input
29	Rx1p	Receiver Non-Inverted Data Output	59	Tx1p	Transmitter Non-Inverted Data
30	GND	Ground	60	GND	Ground

OSFP Module Pad Layout

Materials

Connector

- The Backshell material is Nickel Plated Zinc
- The PCB has gold plated pads
- All materials are RoHS complaint
- The PCBs are certified by UL

Cable

- The conductors are solid copper with silver plating
- The cable jacket is polyvinylchloride (PVC) .
- All materials are RoHS complaint
- The cables are UL listed CL2 75°C

Ordering Information

Table10-Ordering Information	
PN	Description
OSFP-800G-CU0-5H	passive copper cable, InfiniBand 400Gb/s, up to 800Gb/s, OSFP, 0.5m
0SFP-800G-CU1H	passive copper cable, InfiniBand 400Gb/s, up to 800Gb/s, OSFP, 1m
OSFP-800G-CU1-5H	passive copper cable, InfiniBand 400Gb/s, up to 800Gb/s, OSFP, 1.5m
OSFP-800G-CU2H	passive copper cable, InfiniBand 400Gb/s, up to 800Gb/s, OSFP, 2m
OSFP-800G-CU3H	passive copper cable, InfiniBand 400Gb/s, up to 800Gb/s, OSFP, 3m

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. Neither NADDOD make any representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NADDOD shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any material (defined below), code, or functionality.

NADDOD reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NADDOD makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NADDOD. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product.

NADDOD products are sold subject to the NADDOD standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NADDOD and customer ("Terms of Sale"). NADDOD hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NADDOD product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other info@naddod.com

For technical support: tech@naddod.com

Disclaimer

- 1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.
- 2. Nothing herein should be construed as constituting an additional warranty.
- 3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected Accelerated Al Clusters | HPC Datacenter | Enterprise Networking