

400Gb/s Single-port QSFP-DD Multimode VR4 50m Transceiver

Features

- QSFP-DD MSA compliant
- CMIS compliance
- Optical Interface: IEEE 802.3db compliant
- Electrical Interface: IEEE 802.3 2022 400GAUI-8
- Support 425Gb/s aggregate bit rate
- 4 Parallel optical lanes
- MPO-12 optical connector
- Maximum link length of 30m on OM3 or 50m on OM4
- Operating case temperature 0 to 70℃
- Maximum power consumption 8W

Applications

- Data Center Interconnect
- 400G Ethernet

General Description

The QDD-400G-VR4 transceiver is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 50m optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of optical signals, and multiplexes them into a single channel for 400Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 400Gb/s optical input into 4 channels of optical signals, and converts them to 8 channels of 50Gb/s (PAM4) electrical output data.

An optical fiber cable with an MPO-12 connector can be plugged into the QSFP-DD VR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through a QSFP-DD MSA-compliant edge type connector.

This product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD MSA Type2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

12C interface is supported to read and control the status of this product.

Absolute Maximum Ratings

Table1-Absolute Maximum Ratings								
Parameter	Symbols	Min.	Max.	Unit	Notes			
Storage Temperature	T _S	-40	85	$^{\circ}\!\mathbb{C}$				
Operating Case Temperature	T_{OP}	0	70	$^{\circ}\! \mathbb{C}$				
Power Supply Voltage	V_{CC}	-0.5	3.6	V				
Relative Humidity (non-condensation)	RH	0	85	%				

Recommended Operating Conditions

Table2-Recommended Operating Conditions								
Parameter	Symbols	Min.	Typical	Max.	Unit	Notes		
Operating Case Temperature	Тор	0		+70	${\mathbb C}$			
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V			
Data Rate, each Lane			53.465		GBd	PAM4		
Data Rate Accuracy		-100		100	ppm			
Link Distance with 0M4	D	2		50	m	1		
Link Distance with OM3	D	2		30	m	1		

Notes:

[1] FEC required on host system to support maximum transmission distance.

Electrical Characteristic

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply current	lcc			2.55	А	
Power Consumption				8	W	
	Module input (each Lane)				
Signaling Rate, each Lane	TP1	26.5625 =	± 100 ppm		GBd	
Differential pk-pk Input Voltage Tolerance	TP1a	900			mV	
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3-2022 Equation (83E-5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3-2022 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	See IEEE 802.3 2	022 120E.3	.4.1		
Single-ended Voltage Tolerance Range (Min)	TP1a	-0.4	to 3.3		٧	
DC Common Mode Input Voltage	TP1	-350		2850	mV	
	Module output (each Lane)				
Signaling Rate, each lane	TP4	26.5625 =	± 100 ppm		GBd	
Differential Peak-to-Peak Output Voltage	TP4			900	mV	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3-2022 Equation (83E-2)				
Common to Differential Mode Conversion Return Loss	TP4	IEEE 802.3- 2022 Equation (83E-3)				
Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265		UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
DC Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

Optical Characteristics

Parameter	Symbols	Min.	Typical	Max.	Unit	Notes
		Transmitte	er			
Data Rate, each Lane		5	3.125 ± 100	ppm	GBd	
Modulation Format			PAM4			
Center Wavelength	λ	844	850	863	nm	
RMS Spectral Width	$\Delta \lambda \text{rms}$			0.6	nm	1
Average Launch Power, each Lane	P _{AVG}	-4.6		4	dBm	
Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	Рома	-2.6(For max (TECQ,TDECQ) <1.8 dB) -4.4 + max(TECQ,TDE CQ) (For 1.8 < max (TECQ, TDECQ) \ 4.4 dB)		3.5	dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), each Lane	TDECQ			4.4	dB	
Transmitter eye closure for PAM4, each Lane	TECQ			4.4	dB	
Overshoot/undershoot				29	%	
Transmitter power excursion,				2.3	dBm	
Extinction Ratio	ER	2.5			dB	
Transition Time	T _t			17	ps	
Optical Return Loss Tolerance	TOL	14			dB	
Average Launch Power of OFF Transmitter, each Lane	Poff			-30	dBm	
RIN ₁₄ OMA	RIN			-132	dB/Hz	

			< 30% at 4.5				
Receiver							
Data Rate, each Lane			53.125 ± 100 ppm				
Modulation Format			PAM4				
Center Wavelength	λ	842		948	nm		
Damage Threshold, each Lane	TH _d	5			dBm	3	
Average Receive Power, each Lane		-6.4		4	dBm	4	
Receive Power (OMA _{outer)} , each				3.5	dBm		
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			-4.6(For TECQ <1.8 dB) -6.4 +TECQ (For 1.8 < TECQ < 4.4 dB)	dBm	5	
Receiver Reflectance	R_R			-15	dB		
Stressed Receiver Sensitivity [OMA _{outer}], each Lane	SRS			-2.0	dBm	6	
LOS Assert	LOSA	-15			dBm		
LOS De-assert	LOSD			-9.4	dBm		
LOS Hysteresis	LOSH	0.5			dB		
	Conditions of	Stress Receiver	Sensitivity Te	st (Note 7)			
Stressed Eye Closure for PAM4 (SECQ), Lane under Test				4.4	dB		
OMAouter of each aggressor lane				3.5	dBm		

Notes:

- [1] RMS spectral width is the standard deviation of the spectrum.
- [2] If measured into type A1a.2 or type A1a.3, or A1a.4, 50 $\,\mu$ m fiber, in accordance with IEC 61280-1-4.
- [3] The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- [4] Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- [5] Receiver sensitivity (OMAouter) is informative and is defined for a transmitter with a value of TECQ up to 4.4 dB. Receiver sensitivity should meet Equation (1), which is illustrated in Figure 1.

RS= max(-4.6, TECQ-6.4) dBm (1)

Where:

RS is the receiver sensitivity, and

TECQ is the TECQ of the transmitter used to measure the receiver sensitivity.

[6] Measured with conformance test signal at TP3 for the BER equal to 2.4x10⁻⁴.

[7] These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

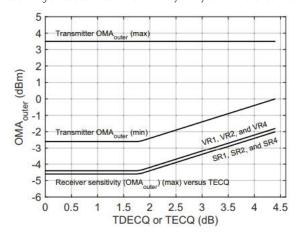


Figure 1 Illustration of Receiver Sensitivity Mask for 400G-VR4

Pin Function Definitions

Table6-Pi	in Function Defini	tions		
Pin	Logic	Symbol	Description	Notes
1		GND	Ground	1B
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B
4		GND	Ground	1B
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B
7		GND	Ground	1B
8	LVTTL-I	ModSelL	Module Select	3B
9	LVTTL-I	ResetL	Module Reset	3B
10		Vcc Rx	+3.3V Power Supply Receiver	2B
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B
13		GND	Ground	1B
14	CML-0	Rx3p	Receiver Non-Inverted Data Output	3B
15	CML-0	Rx3n	Receiver Inverted Data Output	3B
16	GND	GND	Ground	1B
17	CML-0	Rx1p	Receiver Non-Inverted Data Output	3B
18	CML-0	Rx1n	Receiver Inverted Data Output	3B
19		GND	Ground	1B
20		GND	Ground	1B
21	CML-0	Rx2n	Receiver Inverted Data Output	3B
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3B
23		GND	Ground	1B

24 CML-0 Rx4n Receiver Inverted Data Output 25 CML-0 Rx4p Receiver Non-Inverted Data Output 26 GND Ground 27 LVTTL-0 ModPrsL Module Present Interrupt. Optionally configurable as RxLOSL via the	3B 3B 1B 3B 3B 2B
26 GND Ground 27 LVTTL-0 ModPrsL Module Present Interrupt. Optionally configurable as RxLOSL via the	1B 3B 3B 2B
27 LVTTL-0 ModPrsL Module Present Interrupt. Optionally configurable as RxLOSL via the	3B 3B 2B
Interrupt. Optionally configurable as RxLOSL via the	3B 2B
28 LVTTL-0 IntL/RxLOSL	2B
management interface (SFF-8636)	
29 VccTx +3.3V Power supply transmitter	
30 Vcc1 +3.3V Power supply	2B
31 LVTTL-I InitMode InitMode pad is called LPMODE	3B
32 GND Ground	1B
33 CML-I Tx3p Transmitter Non-Inverted Data Input	3B
34 CML-I Tx3n Transmitter Inverted Data Input	3B
35 GND Ground	1B
36 CML-I Tx1p Transmitter Non-Inverted Data Input	3B
37 CML-I Tx1n Transmitter Inverted Data Input	3B
38 GND Ground	1B
39 GND Ground	1A
40 CML-I Tx6n Transmitter Inverted Data Input	ЗА
41 CML-I Tx6p Transmitter Non-Inverted Data Input	ЗА
42 GND Ground	1A
43 CML-I Tx8n Transmitter Inverted Data Input	ЗА
44 CML-I Tx8p Transmitter Non-Inverted Data Input	ЗА
45 GND Ground	1A
46 Reserved For future use	ЗА
47 VS1 Module Vendor Specific 1	ЗА
48 VccRx1 3.3V Power Supply	2A
49 VS2 Module Vendor Specific 2	3A
50 VS3 Module Vendor Specific 3	ЗА
51 GND Ground	1A
52 CML-O Rx7p Receiver Non-Inverted Data Output	ЗА
53 CML-O Rx7n Receiver Inverted Data Output	ЗА
54 GND Ground	1A
55 CML-O Rx5p Receiver Non-Inverted Data Output	3A
56 CML-O Rx5n Receiver Inverted Data Output	ЗА
57 GND Ground	1A
58 GND Ground	1A
59 CML-O Rx6n Receiver Inverted Data Output	ЗА
60 CML-O Rx6p Receiver Non-Inverted Data Output	ЗА
61 GND Ground	1A
62 CML-O Rx8n Receiver Inverted Data Output	ЗА
63 CML-O Rx8p Receiver Non-Inverted Data Output	3A

64		GND	Ground	1A
65		NC	No Connect	ЗА
66		Reserved	For future Use	ЗА
67		VccTx1	3.3V Power Supply	2A
68		Vcc2	3.3V Power Supply	2A
69		Reserved	For future Use	3A
70		GND	Ground	1A
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A
73		GND	Ground	1A
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A
76		GND	Ground	1A

Pin Map and Description

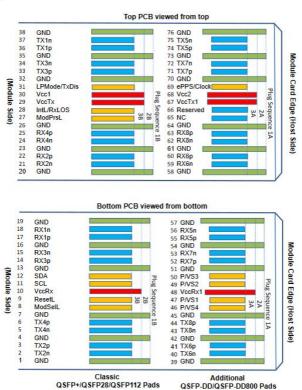


Figure 2 Pin Map and Description

QSFP-DD Control pins

Name	Direction	Description
SCL	BiDir	2-wire serial clock signal. Requires pull-up resistor to 3.3V on host
SDA	BiDir	2-wire serial data signal. Requires pull-up resistor to 3.3V on host
IntL/RxLOS	Output	Active low IntL output port only
LPMode/TxDis	Input	Active high LPMode input port only

Transceiver Block Diagram

Figure 3 Transceiver Block Diagram

Optical Port Description

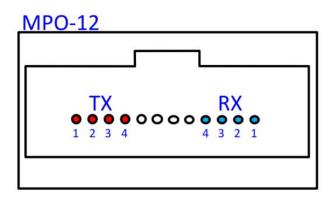


Figure 4 Outside View of the QSFPDD MPO-12 Receptacle

Digital Diagnostic Specifications

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute	DMI Temp	-3	3	degC	Over operating temperature
error	Dill_Terrip	O	Ü	ucgo	range
Supply voltage monitor absolute	DMI VCC	0.1	0.1	V	O f II
error	DMI_VCC	-0.1	U. I	V	Over full operating range
Channel RX power monitor	DMI RX Ch	2	2	dB	1
absolute error	DMI_KV_CII	-2	Z	uБ	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%		
Channel TX power monitor	DMI TV CL	2	0	1D	1
absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Mechanical Dimensions

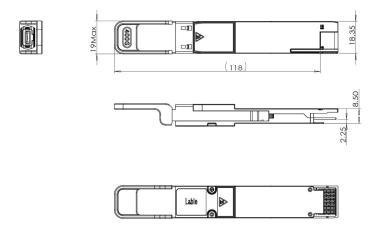


Figure 5. Mechanical Outline

Recommended Power Supply Filter

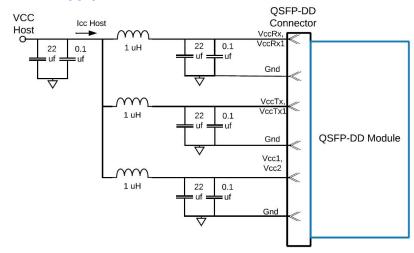


Figure 6. Recommended Power Supply Filter

ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class I Laser Product, or Class 1 Laser Product according to IEC/EN 60825-1:2014.

This product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous

Further Information:

Web www.naddod.com

Email For order requirements: sales@naddod.com For cooperation: agency@naddod.com

For customer service: support@naddod.com For other informations: info@naddod.com

For technical support: tech@naddod.com

Disclaimer

- 1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.
- 2. Nothing herein should be construed as constituting an additional warranty.
- 3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD. Copyright © NADDOD.COM All Rights

NADDOD - Building an Intelligent World with Everything Connected HPC | Al | Datacenter | Enterprise | Telecom