

800G Twin-port OSFP 2xVR4 50m Optical Transceiver

Features

- Supports 850Gbps
- Single 3.3V Power Supply
- Up to 50m over MMF
- 8x106.25Gbps (PAM4) electrical interface
- Flat-top/RHS OSFP
- MMF Dual MPO-12 APC connector
- Power dissipation < 14W
- Case temperature range: 0°C to 70°C
- Safety Certification: TUV/UL/FDA
- RoHS Compliant

Applications

- Used in 800G OSFP switches

Description

OSFP-800G-2VR4F transceiver module is designed for use in 2x400 Gigabit links over 30m OM3 or 50m OM4 fiber. The module has 8 independent electrical input/output channels operating up to 106.25Gbps per channel. This transceiver consists of two transmitter/receiver units, with each operating on 850nm wavelength. The transmitter path of the module incorporates a PAM4 re-timer ASIC with two 4-channel modulator drivers and 8 modulated lasers. The receiver path contains 8 photodiodes and two 4-channel TIAs, along with the PAM4 re-timer. The electrical interface of the module is compliant with the 400GAUI-4 interface as defined by IEEE 802.3ck, and compliant with OSFP MSA.

Absolute Maximum Specifications

Absolute maximum ratings are those beyond which damage to the device may occur.

Prolonged operation between the operational specifications and absolute maximum ratings is not intended and may cause permanent device degradation.

Table1-Absolute Maximum Specifications

Parameter	Min.	Typical	Max.	Unit	Note
Storage Temperature	-40		+85	°C	
Supply voltage	-0.5	3.3	3.6	V	
Relative Humidity (non- condensing)	5		85	%	
Data input voltage – single ended	-0.5		Vcc+0.5	V	

Recommended Operating Conditions

For operations beyond the recommended operating conditions, optical and electrical characteristics are not defined, reliability is not implied, and such operations for a long time may damage the module.

Table2-Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max.	Units	Note
Operating Case Temperature	Top	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Total Power Consumption	Pc			14	W	
Power supply noise				25	mVpp	1
Receiver differential data output load		100			Ohm	
Fiber length (OM3)				30	m	
Fiber length (OM3)				50	m	

Notes:

[1] Power Supply Noise is defined as the peak-to-peak noise amplitude over the frequency range at the host supply side of the recommended power supply filter with the module and recommended filter in place. Voltage levels including peak-to-peak noise are limited to the recommended operating range of the associated power supply.

General Electrical Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Table3-General Electrical Characteristics

Parameter	Min.	Typical	Max.	Unit	Note
Transceiver power consumption			14	W	
Transceiver power supply current, total			4545	mA	
AC coupling capacitors (internal)		0.1		uF	

Reference Points

Test Point	Description
TP1 and TP4	TP1 and TP4 are informative reference points that may be useful to implementers for testing components.

TP2	Unless specified otherwise, all transmitter measurements defined in 802.3db 167.7.1 are made at TP2.
TP3	Unless specified otherwise, all receiver measurements and tests defined in 802.3db 167.7.2 are made at TP3.

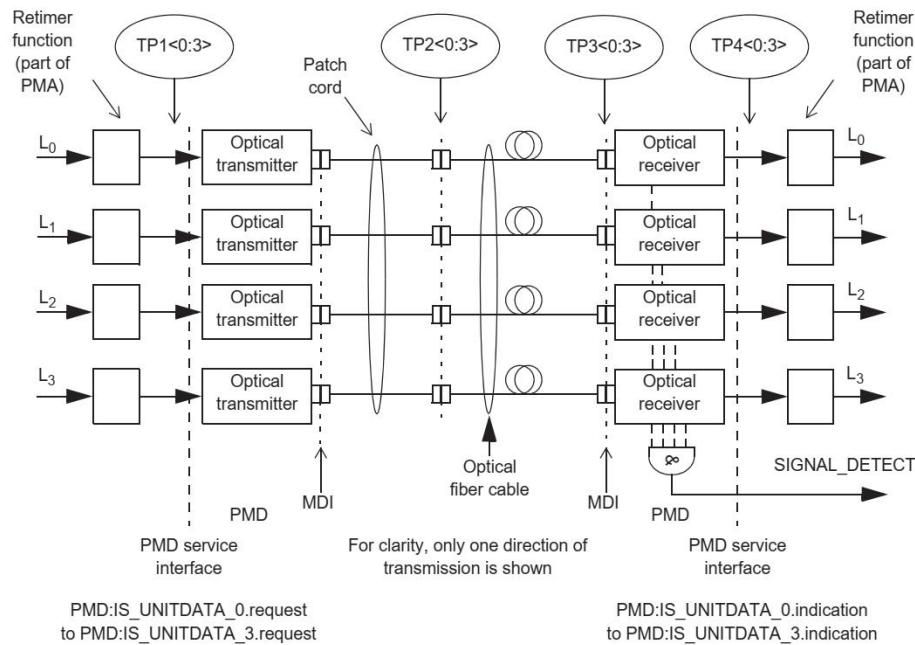


Figure 1 IEEE 802.3db Block Diagram for 400GBASE-VR4 Transmit/Receive Paths

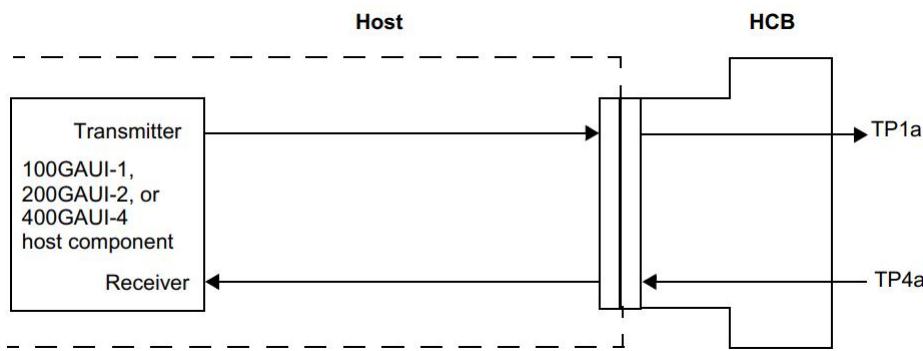


Figure 2 IEEE 802.3ck 400GAUI-4 compliance points TP1a, TP4a

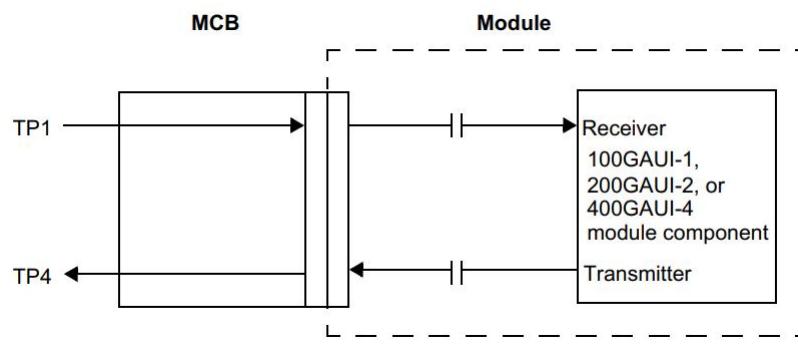


Figure 3 IEEE 802.3ck 400GAUI-4 compliance points TP1, TP4

High Speed Electrical Input Characteristics

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table4-High Speed Electrical Input Characteristics

Parameter	Test Point	Min.	Typical	Max.	Unit	Conditions
Signaling Rate, Per Lane (PAM4 encoded)	TP1		53.125		GBd	+/- 100 ppm
Differential peak-peak Input Voltage Tolerance	TP1a	750			mV	
Peak-to-Peak AC Common-Mode Voltage Tolerance	TP1a	32			mV	
Full-band, VCM _{FB}	TP1a	80			mV	
Differential-Mode to Common-Mode Return Loss, RLcd	TP1	Equation (120G-2)			dB	
Effective return loss, ERL	TP1	8.5			dB	
Differential Termination Mismatch	TP1a			10	%	
Single-ended voltage tolerance range	TP1a	-0.4		3.3	V	

DC common-mode voltage tolerance range	TP1	-350	2850	mV	
Module stressed input tolerance test:		9		ps	
Pattern generator transition time					
Applied peak-peak sinusoidal jitter		Table 162-16			
Eye height		10		mV	
Vertical eye closure, VEC	12		12.5	dB	
Crosstalk differential peak-to-peak voltage		750		mV	
Crosstalk transition time-Short Mode		10		ps	
Crosstalk transition time-Long Mode		15		ps	

High Speed Electrical Output Characteristics

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table5-High Speed Electrical Output Characteristics

Parameter	Test Point	Min.	Typical	Max.	Unit	Note
Signaling rate, per lane (range)	TP4		53.125± 100 ppm		GBd	
AC common-mode output voltage	Low-frequency, VCM _{LF}	TP4		32	mV	
	Full-band, VCM _{FB}	TP4		80	mV	
Differential peak-to-peak Output voltage		TP4		600 845	mV	
Short mode						

Long mode						
Eye height	TP4	15			mV	
Vertical eye closure	TP4			12	dB	
Effective return loss	TP4	8.5			dB	
Common-mode to differential-mode return loss	TP4	Equation (120G-1)			dB	
Differential termination mismatch	TP4			10	%	
Transition time	TP4	8.5			ps	
DC common-mode voltage tolerance	TP4	-350		2850	mV	

High Speed Optical Transmitter Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Table6-Optical Characteristics @TP2 Test Point

Parameter	Test Point	Min.	Typical	Max.	Unit	Note
Signaling speed per lane			53.125 ± 100ppm		GBd	
Modulation format			PAM4			
Center wavelength	λc	845		868	nm	
RMS Spectral Width	△λrms			0.65	Nm	
Average Launch Power, each Lane	Pavg	-4.6		4	dBm	
Outer Optical Modulation Amplitude(OMAouter), each Lane (max)	P _{OMA}			3.5	dBm	

Outer Optical Modulation Amplitude(OMA_{outer}), each Lane (min) for max (TECQ, TDECQ) ≤ 1.8 dB	P_{OMA}	-2.6			dBm	
Outer Optical Modulation Amplitude(OMA_{outer}), each Lane (min) for $1.8 < max$ (TECQ, TDECQ) ≤ 4.4 dB	P_{OMA}	-4.4+max (TECQ, TDECQ)			dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), each Lane	TDECQ			4.4	dB	
Transmitter Eye Closure for PAM4(TECQ), each Lane	TECQ			4.4	dBm	
Overshoot/Uundershoot				29	%	
Transmitter Power Excursion, each Lane				2.3	dBm	
Extinction Ratio, each Lane	ER	2.5			dB	
Transmitter Transition Time, each Lane				17	ps	
Average Launch Power of OFF Transmitter, each Lane	P_{off}			-30	dBm	
RIN_{12OMA}	RIN_{12OMA}			-132	dB/Hz	
Optical Return Loss Tolerance	ORL			14	dB	
Encircled Flux	EF		$\geq 86\%$ at $19\mu m$ $\leq 30\%$ at $4.5\mu m$			

High Speed Optical Receiver Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions

Table7-Optical Characteristics @TP3 Test Point

Parameter	Test Point	Min.	Typical	Max.	Unit	Note
Signaling speed per lane			53.125 ± 100ppm		GBd	
Modulation format			PAM4			
Center wavelength	λ_{c0}	842		868	nm	
Damage Threshold		5			dBm	1
Average Receiver Power, each Lane		-6.3		4	dBm	2
Receiver Power, each Lane (OMA _{outer})				3.5	dBm	
Receiver Reflectance				-15	dB	
Receiver Sensitivity (OMA _{outer}) for TECQ≤1.8dB	SEN			-4.4	dBm	
Receiver Sensitivity (OMA _{outer}) for 1.8<TECQ≤4.4dB	SEN				dBm	
LOS Assert	LOSA	-15		-6.2+TECQ	dBm	
LOS De-Assert	LOSD			-9	dBm	
Stressed Receiver Sensitivity (OMA _{outer}), each -Lane				-1.8		3
Conditions of Stressed Receiver Sensitivity test						4
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			4.4			

OMA _{outer} of each Aggressor Lane	3.5
---	-----

Notes:

- [1] The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.
- [2] Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- [3] Measured with conformance test signal at TP3 (see 167.8.14) for the BER specified in 167.1.1.
- [4] These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Regulatory Compliance Issues

Various standard and regulations apply to the 800G modules. These include eye-safety, Component Recognition, RoHS, ESD, EMC and Immunity. Please note the transmitter module is a Class 1 laser product. See Regulatory Compliance Table for details.

Table8-Regulatory Compliance Table

Feature	Test Method	Performance
Laser Eye Safety and Equipment Type Testing	(IEC) EN 62368-1:2014+A11 (IEC) EN 60825-1:2014 (IEC) EN 60825-2:2004+A1+A2	CDRH Accession Number:2132182-000 TUV File: R 50457725 0001 CB File: JPTUV-100513
Component Recognition	Underwriters Laboratories (UL) and Canadian Standards Association (CSA) Joint Component Recognition for Information Technology Equipment including Electrical Business Equipment	UL File: E317337
RoHS Compliance	RoHS Directive 2011/65/EU&(EU)2015/863	Less than 100 ppm of cadmium. Less than 1000 ppm lead, mercury, hexavalent

		chromium, poly brominated biphenyls (PPB), poly brominated biphenyl ethers (PBDE), dibutyl phthalate, butyl benzyl phthalate, bis (2-ethylhexyl) phthalate and diisobutyl phthalates.
Electrostatic Discharge (ESD) to the Electrical Contacts	JEDEC Human Body Model (HBM)	High speed contacts shall withstand 1000V. All other contacts shall withstand 2000 V.
Electrostatic Discharge (ESD) to the Optical Connector Receptacle	IEC 61000-4-2:2008	When installed in a properly grounded housing and chassis the units are subjected to 15Kv air discharge during operation and 8Kv direct discharge to the case.
Electromagnetic Interference (EMI)	FCC Part 15 Class B; CISPR 32 (EN55032) 2015;	System margins are dependent on customer board and chassis design.
Immunity	IEC 61000-4-3:2010; EN55035:2017	Typically shows no measurable effect from a 10V/m field swept from 8MHz to 6 GHz applied to the module without a chassis enclosure.

Electrostatic Discharge (ESD)

The 800G module is complies with the ESD requirements described in the Regulatory Compliance Table. However, in the normal processing and operation of optical transceiver, the following two types of situations need special attention.

Case I: Before inserting the transceiver into the rack meeting the requirements of OSFP compliant cage, ESD preventive measures must be taken to protect the equipment. For example, the grounding wrist strap, workbench and floor should be used wherever the transceiver is handled.

Case II: After the transceiver is installed, the electrostatic discharge outside the chassis of the host equipment shall be within the scope of system level ESD requirements. If the optical interface of the transceiver is exposed outside the host equipment cabinet, the transceiver may be subject to equipment

system level ESD requirements.

Electromagnetic Interference (EMI)

Communication equipment with optical transceivers is usually regulated by FCC in the United States and CENELEC EN55032 (CISPR 32) in Europe. The compliance of 800G module with these standards is detailed in the regulatory compliance table. The metal shell and shielding design of 800G module will help equipment designers minimize the equipment level EMI challenges they face.

Flammability

The 800G module optical transceiver meets UL certification requirements, its constituent materials have heat and corrosion resistance, and the plastic parts meet UL94V-0 requirements.

OSFP Module Pad Layout

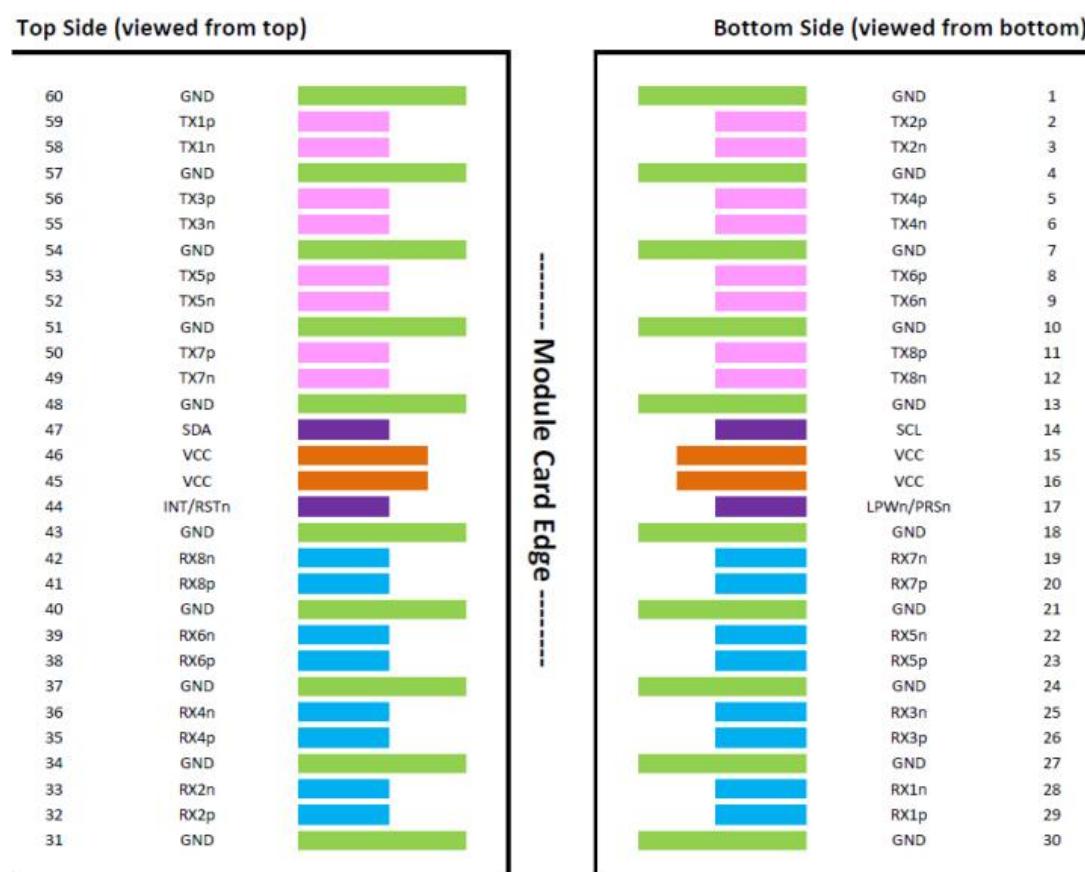


Figure 4 MSA Compliant Connector

Pin Arrangement and Definition

Table9-Pin Arrangement and Definition

Pin	Symbol	Description	Logic	Notes
1	GND	Ground		1
2	Tx2p	Transmitter Data Non-Inverted	CML-I	
3	Tx2n	Transmitter Data Inverted	CML-I	
4	GND	Ground		1
5	Tx4p	Transmitter Data Non-Inverted	CML-I	
6	Tx4n	Transmitter Data Inverted	CML-I	
7	GND	Ground		1
8	TX6p	Transmitter Data Non-Inverted	CML-I	
9	Tx6n	Transmitter Data Inverted	CML-I	
10	GND	Ground		1
11	Tx8p	Transmitter Data Non-Inverted	CML-I	
12	Tx8n	Transmitter Data Inverted	CML-I	
13	GND	Ground		1
14	SCL	2-wire serial interface clock	LVCMOS-I/O	2
15	VCC	+3.3V Power		
16	VCC	+3.3V Power		
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	
18	GND	Ground		1
19	Rx7n	Receiver Data Inverted	CML-O	
20	Rx7p	Receiver Data Non-Inverted	CML-O	
21	GND	Ground		1
22	Rx5n	Receiver Data Inverted	CML-O	
23	Rx5p	Receiver Data Non-Inverted	CML-O	
24	GND	Ground		1
25	Rx3n	Receiver Data Inverted	CML-O	
26	Rx3p	Receiver Data Non-Inverted	CML-O	
27	GND	Ground		1
28	Rx1n	Receiver Data Inverted	CML-O	
29	Rx1p	Receiver Data Non-Inverted	CML-O	
30	GND	Ground		1
31	GND	Ground		1

32	Rx2p	Receiver Data Non-Inverted	CML-O	
33	Rx2n	Receiver Data Inverted	CML-O	
34	GND	Ground		1
35	Rx4p	Receiver Data Non-Inverted	CML-O	
36	Rx4n	Receiver Data Inverted	CML-O	
37	GND	Ground		1
38	Rx6p	Receiver Data Non-Inverted	CML-O	
39	Rx6n	Receiver Data Inverted	CML-O	
40	GND	Ground		1
41	Rx8p	Receiver Data Non-Inverted	CML-O	
42	Rx8n	Receiver Data Inverted	CML-O	
43	GND	Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	
45	VCC	+3.3V Power		
46	VCC	+3.3V Power		
47	SCL	2-wire Serial interface data	LVCMOS-I/O	2
48	GND	Ground		1
49	Tx7n	Transmitter Data Inverted	CML-I	
50	Tx7p	Transmitter Data Non-Inverted	CML-I	
51	GND	Ground		1
52	Tx5n	Transmitter Data Inverted	CML-I	
53	Tx5p	Transmitter Data Non-Inverted	CML-I	
54	GND	Ground		1
55	Tx3n	Transmitter Data Inverted	CML-I	
56	Tx3p	Transmitter Data Non-Inverted	CML-I	
57	GND	Ground		1
58	Tx1n	Transmitter Data Inverted	CML-I	
59	Tx1p	Transmitter Data Non-Inverted	CML-I	
60	GND	Ground		1

Notes:

[1] OSFP uses common ground (GND) for all signals and supply (power). All are common within the OSFP module and all module voltages are referenced to this potential unless otherwise noted.

[2] Open-Drain with pull up resistor on Host.

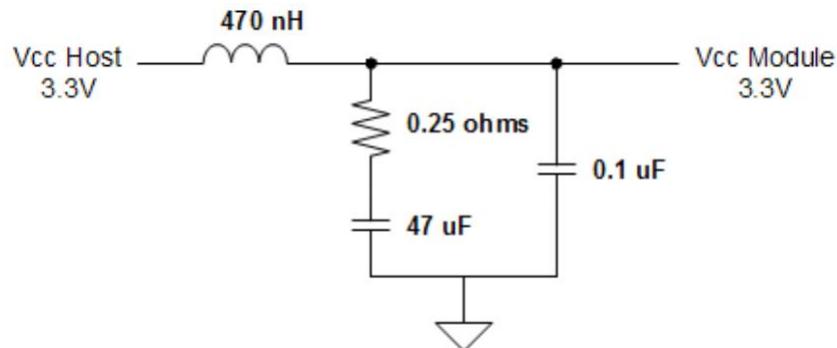


Figure 5 Recommended Host Board Power Supply Filter

For safety and protection of the host system, the power to each OSFP module may be protected by an electronic circuit breaker on the host board which is enabled with the H_PRSn signal such that power is only enabled when the module is fully engaged into the OSFP connector.

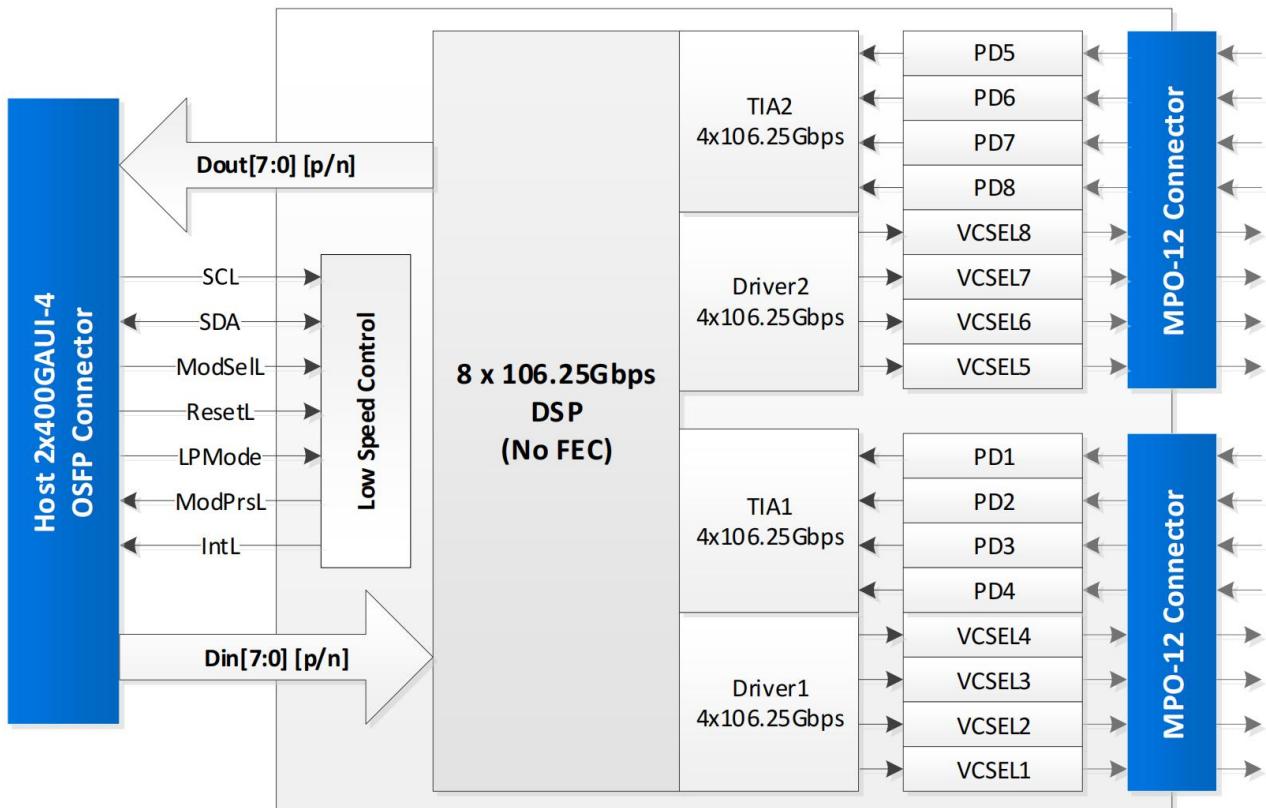


Figure 6 Transceiver Block Diagram

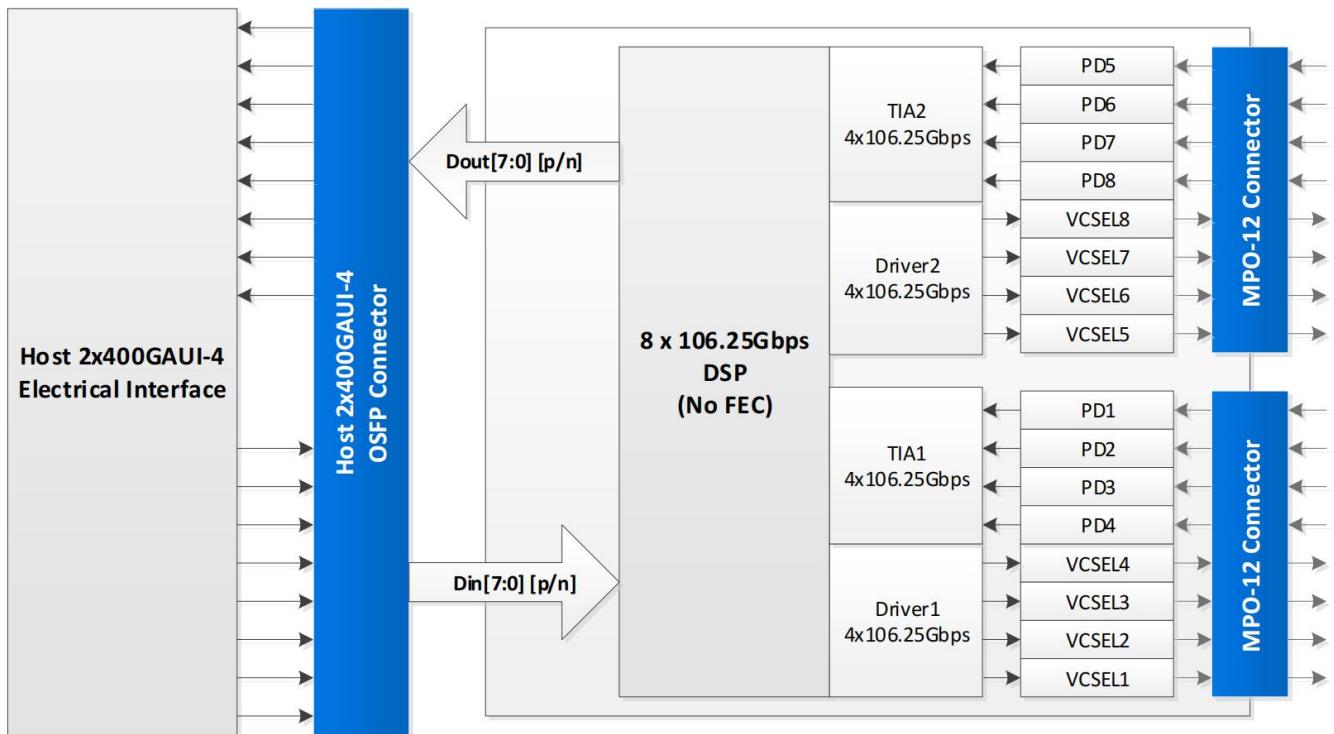


Figure 7 Application Reference Diagram

Transmitter

As shown in Figure 6, the transmitter path of the transceiver contains an 8x106.25Gbps 2x400GAUI-4 electrical input and equalization (EQ) block, two 4-channel laser drivers and eight multi-mode laser sources.

Receiver

As shown in Figure 6, the receiver part of the transceiver contains eight PIN photodiodes, two 4-channel trans-impedance amplifiers (TIA) and an integrated 8x106.25Gbps 2x400GAUI-4 compatible electrical output block

High Speed Electrical Signal Interface

The interface between OSFP module and ASIC/SerDes is showed in Figure 2. The high speed signal lines are internally AC-coupled and the electrical inputs are internally terminated to 100 Ohms differential. All transmitter and receiver electrical channels are compliant to C2M 400GAUI-4

specifications per IEEE 802.3ck..

Control Signal Interface

The control signal interface is compliant with OSFP MSA. The following pin is provided to control module or display the module status: LPWn/PRSn, INT/RSTn. In addition, there is an industry standard two wire serial interface scaled for 3.3V LVTTL. The definition of control signal interface and the registers of the serial interface memory are defined in the Control Interface & Memory Map section.

Handling and Cleaning

Exposure to current surges and over voltage events can cause immediate damage to the transceiver module. Observe the precautions for normal operation of electrostatic discharge sensitive equipment. Attention shall also be paid to limiting transceiver module exposure to conditions beyond those specified in the absolute maximum ratings.

Optical connectors include female connectors. These elements will be exposed as long as the cable or port plug is not inserted. At this time, always pay attention to protection.

Each module is equipped with a port guard plug to protect the optical port. The protective plug shall always be in place whenever the optical fiber is not inserted. Before inserting the optical fiber, it is recommended to clean the end of the optical fiber connector to avoid contamination of the module optical port due to dirty connector. If contamination occurs, use standard MPO port cleaning methods.

Package Outline

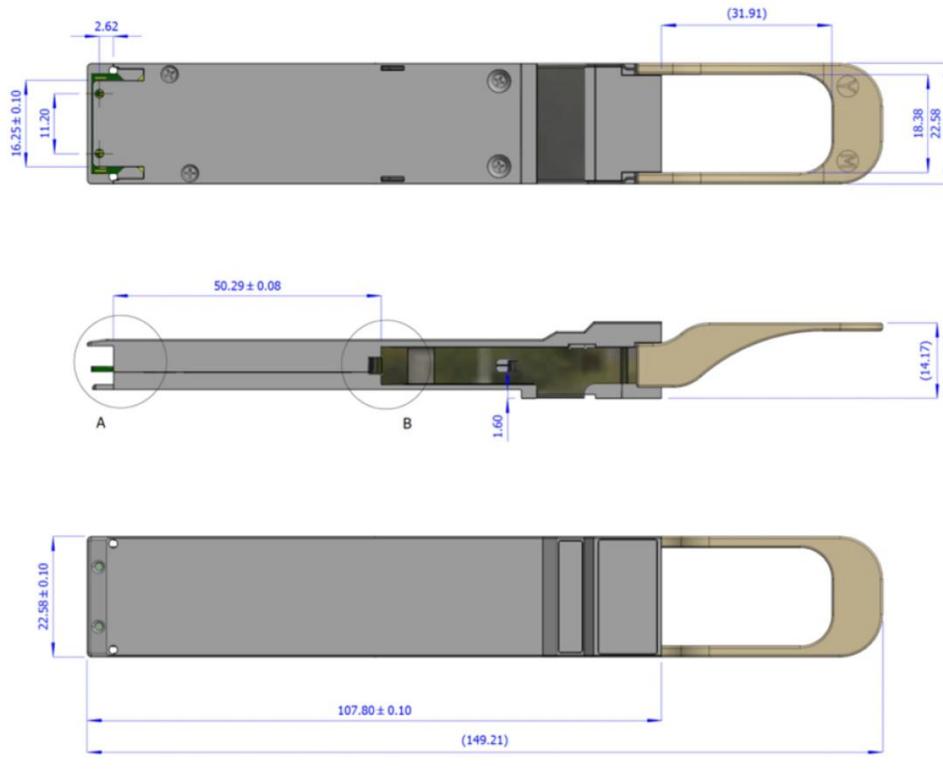


Figure 8 Finned Top Package Outline

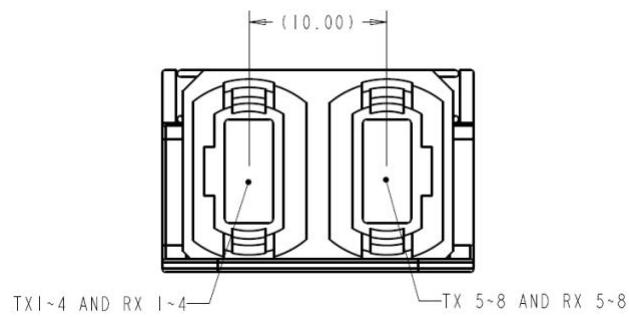


Figure 9 Module Optical Interface (looking into the optical port)

Memory Map

The control interface and memory map of the OSFP module is compliant with the CMIS. The OSFP module support I²C interface protocol defined by the CMIS. Access clock frequency is support a minimum of 100 kHz with no clock stretching.

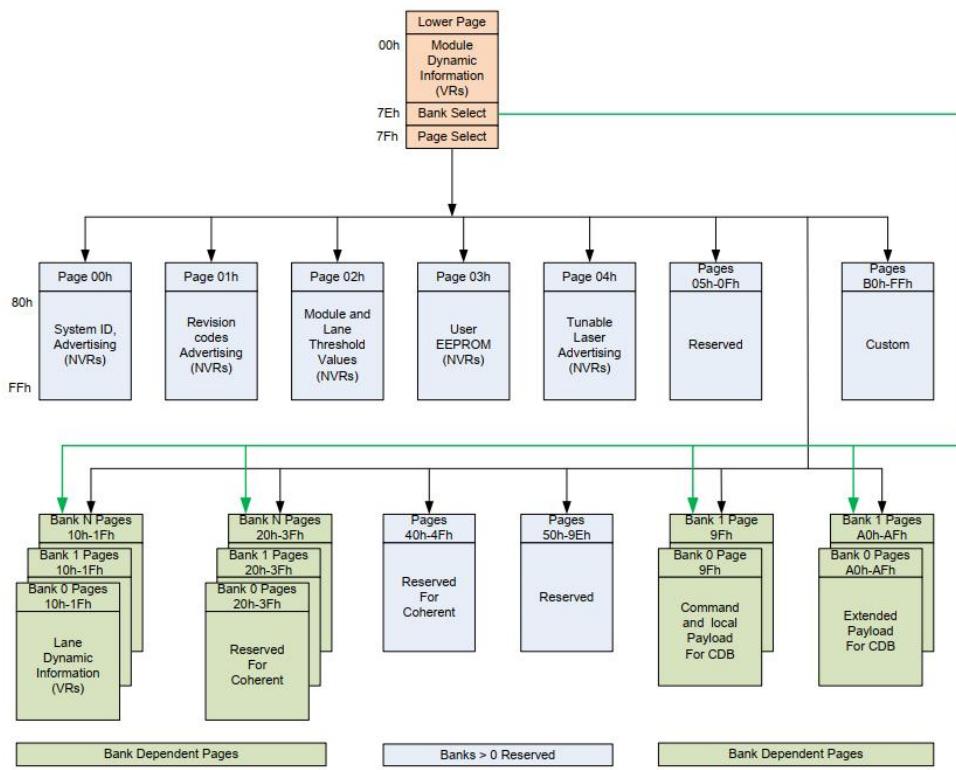


Figure 10 Simplified OSFP CMIS Module Memory Map Architecture

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. Neither NADDOD make any representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NADDOD shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any material (defined below), code, or functionality.

NADDOD reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NADDOD makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NADDOD. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product.

NADDOD products are sold subject to the NADDOD standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NADDOD and customer ("Terms of Sale"). NADDOD hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NADDOD product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

I Further Information

Web www.naddod.com

Email For order requirements: sales@naddod.com

For other information: info@naddod.com

For cooperation: agency@naddod.com

For technical support: tech@naddod.com

For customer service: support@naddod.com

Disclaimer

1. We are committed to continuous product improvement and feature upgrades, and the contents contained in this manual are subject to change without notice.
2. Nothing herein should be construed as constituting an additional warranty.
3. NADDOD assumes no responsibility for the use or reliability of equipment or software not provided by NADDOD.

Copyright © NADDOD.COM All Rights